Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pathogens ; 11(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364996

ABSTRACT

Dynamic post-translational modifications allow the rapid, specific, and tunable regulation of protein functions in eukaryotic cells. S-acylation is the only reversible lipid modification of proteins, in which a fatty acid, usually palmitate, is covalently attached to a cysteine residue of a protein by a zDHHC palmitoyl acyltransferase enzyme. Depalmitoylation is required for acylation homeostasis and is catalyzed by an enzyme from the alpha/beta hydrolase family of proteins usually acyl-protein thioesterase (APT1). The enzyme responsible for depalmitoylation in Trypanosoma brucei parasites is currently unknown. We demonstrate depalmitoylation activity in live bloodstream and procyclic form trypanosomes sensitive to dose-dependent inhibition with the depalmitoylation inhibitor, palmostatin B. We identified a homologue of human APT1 in Trypanosoma brucei which we named TbAPT-like (TbAPT-L). Epitope-tagging of TbAPT-L at N- and C- termini indicated a cytoplasmic localization. Knockdown or over-expression of TbAPT-L in bloodstream forms led to robust changes in TbAPT-L mRNA and protein expression but had no effect on parasite growth in vitro, or cellular depalmitoylation activity. Esterase activity in cell lysates was also unchanged when TbAPT-L was modulated. Unexpectedly, recombinant TbAPT-L possesses esterase activity with specificity for short- and medium-chain fatty acid substrates, leading to the conclusion, TbAPT-L is a lipase, not a depalmitoylase.

2.
Cell Chem Biol ; 28(10): 1501-1513.e5, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34043961

ABSTRACT

The intracellular protozoan parasite Toxoplasma gondii must scavenge cholesterol and other lipids from the host to facilitate intracellular growth and replication. Enzymes responsible for neutral lipid synthesis have been identified but there is no evidence for enzymes that catalyze lipolysis of cholesterol esters and esterified lipids. Here, we characterize several T. gondii serine hydrolases with esterase and thioesterase activities that were previously thought to be depalmitoylating enzymes. We find they do not cleave palmitoyl thiol esters but rather hydrolyze short-chain lipid esters. Deletion of one of the hydrolases results in alterations in levels of multiple lipids species. We also identify small-molecule inhibitors of these hydrolases and show that treatment of parasites results in phenotypic defects reminiscent of parasites exposed to excess cholesterol or oleic acid. Together, these data characterize enzymes necessary for processing lipids critical for infection and highlight the potential for targeting parasite hydrolases for therapeutic applications.


Subject(s)
Lipid Metabolism/physiology , Protozoan Proteins/metabolism , Serine Endopeptidases/metabolism , Toxoplasma/enzymology , Amino Acid Sequence , Catalytic Domain , Hydrolysis , Kinetics , Phylogeny , Protozoan Proteins/classification , Protozoan Proteins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Alignment , Serine Endopeptidases/classification , Serine Endopeptidases/genetics , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Substrate Specificity , Toxoplasma/growth & development , Toxoplasma/physiology
3.
ACS Infect Dis ; 7(6): 1457-1468, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33570381

ABSTRACT

Two proteases produced by the SARS-CoV-2 virus, the main protease and papain-like protease, are essential for viral replication and have become the focus of drug development programs for treatment of COVID-19. We screened a highly focused library of compounds containing covalent warheads designed to target cysteine proteases to identify new lead scaffolds for both Mpro and PLpro proteases. These efforts identified a small number of hits for the Mpro protease and no viable hits for the PLpro protease. Of the Mpro hits identified as inhibitors of the purified recombinant protease, only two compounds inhibited viral infectivity in cellular infection assays. However, we observed a substantial drop in antiviral potency upon expression of TMPRSS2, a transmembrane serine protease that acts in an alternative viral entry pathway to the lysosomal cathepsins. This loss of potency is explained by the fact that our lead Mpro inhibitors are also potent inhibitors of host cell cysteine cathepsins. To determine if this is a general property of Mpro inhibitors, we evaluated several recently reported compounds and found that they are also effective inhibitors of purified human cathepsins L and B and showed similar loss in activity in cells expressing TMPRSS2. Our results highlight the challenges of targeting Mpro and PLpro proteases and demonstrate the need to carefully assess selectivity of SARS-CoV-2 protease inhibitors to prevent clinical advancement of compounds that function through inhibition of a redundant viral entry pathway.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Peptide Hydrolases , Protease Inhibitors
4.
Cell Chem Biol ; 27(2): 143-157.e5, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31978322

ABSTRACT

Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/ß serine hydrolase domains and several are essential for parasite growth. One of the essential targets displays a high degree of homology to human monoacylglycerol lipase (MAGL) and is able to process lipid esters including a MAGL acylglyceride substrate. This Sal A target is inhibited by the anti-obesity drug Orlistat, which disrupts lipid metabolism. Resistance selections yielded parasites that showed only minor reductions in sensitivity and that acquired mutations in a PRELI domain-containing protein linked to drug resistance in Toxoplasma gondii. This inability to evolve efficient resistance mechanisms combined with the non-essentiality of human homologs makes the serine hydrolases identified here promising antimalarial targets.


Subject(s)
Antimalarials/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Hydrolases/metabolism , Lipid Metabolism/drug effects , Protozoan Proteins/metabolism , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/therapeutic use , Biological Products/chemical synthesis , Biological Products/pharmacology , Biological Products/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Click Chemistry , Drug Resistance/drug effects , Humans , Hydrolases/antagonists & inhibitors , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Orlistat/chemistry , Orlistat/metabolism , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics
5.
Cell Chem Biol ; 26(1): 35-47.e7, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30393067

ABSTRACT

Palmitoylation is a post-translational modification involving the thioesterification of cysteine residues with a 16-carbon-saturated fatty acid. Little is known about rates of depalmitoylation or the parameters that dictate these rates. Here we report a modular strategy to synthesize quenched fluorogenic substrates for the specific detection of depalmitoylase activity and for mapping the substrate specificity of individual depalmitoylases. We demonstrate that human depalmitoylases APT1 and APT2, and TgPPT1 from the parasite Toxoplasma gondii, have distinct specificities that depend on amino acid residues distal to the palmitoyl cysteine. This information informs the design of optimal and non-optimal substrates as well as isoform-selective substrates to detect the activity of a specific depalmitoylase in complex proteomes. In addition to providing tools for studying depalmitoylases, our findings identify a previously unrecognized mechanism for regulating steady-state levels of distinct palmitoylation sites by sequence-dependent control of depalmitoylation rates.


Subject(s)
Fluorescent Dyes/metabolism , Membrane Proteins/metabolism , Peptides/metabolism , Thiolester Hydrolases/metabolism , Animals , Cell Line , Female , Fluorescent Dyes/chemistry , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Peptides/chemistry , Substrate Specificity , Toxoplasma/metabolism
6.
mSphere ; 3(5)2018 09 19.
Article in English | MEDLINE | ID: mdl-30232166

ABSTRACT

Hydrolase are enzymes that regulate diverse biological processes, including posttranslational protein modifications. Recent work identified four active serine hydrolases (ASHs) in Toxoplasma gondii as candidate depalmitoylases. However, only TgPPT1 (ASH1) has been confirmed to remove palmitate from proteins. ASH4 (TgME49_264290) was reported to be refractory to genetic disruption. We demonstrate that recombinant ASH4 is an esterase that processes short acyl esters but not palmitoyl thioesters. Genetic disruption of ASH4 causes defects in cell division and premature scission of parasites from residual bodies. These defects lead to the presence of vacuoles with a disordered intravacuolar architecture, with parasites arranged in pairs around multiple residual bodies. Importantly, we found that the deletion of ASH4 correlates with a defect in radial dispersion from host cells after egress. This defect in dispersion of parasites is a general phenomenon that is observed for disordered vacuoles that occur at low frequency in wild-type parasites, suggesting a possible general link between intravacuolar organization and dispersion after egress.IMPORTANCE This work defines the function of an enzyme in the obligate intracellular parasite Toxoplasma gondii We show that this previously uncharacterized enzyme is critical for aspects of cellular division by the parasite and that loss of this enzyme leads to parasites with cell division defects and which also are disorganized inside their vacuoles. This leads to defects in the ability of the parasite to disseminate from the site of an infection and may have a significant impact on the parasite's overall infectivity of a host organism.


Subject(s)
Hydrolases/metabolism , Protozoan Proteins/metabolism , Toxoplasma/enzymology , Toxoplasma/growth & development , Vacuoles/parasitology , Cell Division , Cell Line , Host-Parasite Interactions , Humans , Hydrolases/genetics , Protein Processing, Post-Translational , Protozoan Proteins/genetics , Serine/genetics , Structural Homology, Protein , Toxoplasma/genetics , Toxoplasmosis
8.
Mol Cell Biol ; 37(17)2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28606933

ABSTRACT

Phosphatidylserine decarboxylase 1 (Psd1p), an ancient enzyme that converts phosphatidylserine to phosphatidylethanolamine in the inner mitochondrial membrane, must undergo an autocatalytic self-processing event to gain activity. Autocatalysis severs the protein into a large membrane-anchored ß subunit that noncovalently associates with the small α subunit on the intermembrane space side of the inner membrane. Here, we determined that a temperature sensitive (ts) PSD1 allele is autocatalytically impaired and that its fidelity is closely monitored throughout its life cycle by multiple mitochondrial quality control proteases. Interestingly, the proteases involved in resolving misfolded Psd1ts vary depending on its autocatalytic status. Specifically, the degradation of a Psd1ts precursor unable to undergo autocatalysis requires the unprecedented cooperative and sequential actions of two inner membrane proteases, Oma1p and Yme1p. In contrast, upon heat exposure postautocatalysis, Psd1ts ß subunits accumulate in protein aggregates that are resolved by Yme1p acting alone, while the released α subunit is degraded in parallel by an unidentified protease. Importantly, the stability of endogenous Psd1p is also influenced by Yme1p. We conclude that Psd1p, the key enzyme required for the mitochondrial pathway of phosphatidylethanolamine production, is closely monitored at several levels and by multiple mitochondrial quality control mechanisms present in the intermembrane space.


Subject(s)
Carboxy-Lyases/metabolism , Mitochondria/enzymology , Mitochondrial Membranes/enzymology , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism
9.
Int Rev Cell Mol Biol ; 321: 29-88, 2016.
Article in English | MEDLINE | ID: mdl-26811286

ABSTRACT

Phosphatidylethanolamine (PE) is the second most abundant glycerophospholipid in eukaryotic cells. The existence of four only partially redundant biochemical pathways that produce PE, highlights the importance of this essential phospholipid. The CDP-ethanolamine and phosphatidylserine decarboxylase pathways occur in different subcellular compartments and are the main sources of PE in cells. Mammalian development fails upon ablation of either pathway. Once made, PE has diverse cellular functions that include serving as a precursor for phosphatidylcholine and a substrate for important posttranslational modifications, influencing membrane topology, and promoting cell and organelle membrane fusion, oxidative phosphorylation, mitochondrial biogenesis, and autophagy. The importance of PE metabolism in mammalian health has recently emerged following its association with Alzheimer's disease, Parkinson's disease, nonalcoholic liver disease, and the virulence of certain pathogenic organisms.


Subject(s)
Phosphatidylethanolamines/metabolism , Alzheimer Disease/metabolism , Animals , Autophagy , Candida , Carboxy-Lyases/metabolism , Cell Membrane/metabolism , Cytidine Diphosphate/analogs & derivatives , Cytidine Diphosphate/metabolism , Ethanolamines/metabolism , Humans , Lipid Metabolism , Methylation , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Oxidative Phosphorylation , Parkinson Disease/metabolism , Phosphatidylcholines/metabolism , Phospholipids/metabolism , Prions/metabolism , Protein Processing, Post-Translational , Virulence
10.
J Biol Chem ; 290(20): 12744-52, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25829489

ABSTRACT

Phosphatidylethanolamine (PE) is a major cellular phospholipid that can be made by four separate pathways, one of which resides in the mitochondrion. The mitochondrial enzyme that generates PE is phosphatidylserine decarboxylase 1 (Psd1p). The pool of PE produced by Psd1p, which cannot be compensated for by the other cellular PE metabolic pathways, is important for numerous mitochondrial functions, including oxidative phosphorylation and mitochondrial dynamics and morphology, and is essential for murine development. To become catalytically active, Psd1p undergoes an autocatalytic processing step involving a conserved LGST motif that separates the enzyme into α and ß subunits that remain non-covalently attached and are anchored to the inner membrane by virtue of the membrane-embedded ß subunit. It was speculated that Psd1p autocatalysis requires a mitochondrial-specific factor and that for Psd1p to function in vivo, it had to be embedded with the correct topology in the mitochondrial inner membrane. However, the identity of the mitochondrial factor required for Psd1p autocatalysis has not been identified. With the goal of defining molecular requirements for Psd1p autocatalysis, we demonstrate that: 1) despite the conservation of the LGST motif from bacteria to humans, only the serine residue is absolutely required for Psd1p autocatalysis and function; 2) yeast Psd1p does not require its substrate phosphatidylserine for autocatalysis; and 3) contrary to a prior report, yeast Psd1p autocatalysis does not require mitochondrial-specific phospholipids, proteins, or co-factors, because Psd1p re-directed to the secretory pathway undergoes autocatalysis normally and is fully functional in vivo.


Subject(s)
Carboxy-Lyases/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Motifs , Carboxy-Lyases/genetics , Catalysis , Enzyme Activation/physiology , Humans , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics
11.
Dev Dyn ; 243(9): 1095-105, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24866848

ABSTRACT

BACKGROUND: WNTLESS (WLS) is a multi-transmembrane protein that transports Wnt ligands from the Golgi to the cell surface. Although WLS loss-of-function experiments in the developing central nervous system reveal phenotypes consistent with defects in WNT1 and WNT3A signaling, data from complementary gain-of-function experiments have not yet been reported. Here, we report the phenotypic consequences of WLS overexpression in cultured cells and in the developing chick spinal cord. RESULTS: Overexpression of small amounts of WLS along with either WNT1 or WNT3A promotes the Wnt/ß-catenin pathway in HEK293T cells, while overexpression of higher levels of WLS inhibits the Wnt/ß-catenin pathway in these cells. Similarly, overexpressed WLS inhibits the Wnt/ß-catenin pathway in the developing spinal cord, as assessed by cell proliferation and specification. These effects appear to be Wnt-specific as overexpression of WLS inhibits the expression of FZD10, a target of ß-catenin-dependent transcription. CONCLUSIONS: Our results show that overexpression of WLS inhibits Wnt/ß-catenin signaling in the spinal cord. As the activation of the Wnt/ß-catenin pathway in the spinal cord requires WNT1 or WNT3A, our results are consistent with a model in which the relative concentration of WLS to Wnt regulates WNT1/3A signaling in the developing spinal cord.


Subject(s)
Intracellular Signaling Peptides and Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Wnt Proteins/metabolism , Wnt Signaling Pathway/genetics , Animals , Cell Proliferation , Chick Embryo , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Spinal Cord/metabolism
12.
Dev Dyn ; 243(6): 833-843, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24599775

ABSTRACT

BACKGROUND: WNT1 and WNT3A drive a dorsal to ventral gradient of ß-catenin-dependent Wnt signaling in the developing spinal cord. However, the identity of the receptors mediating downstream functions remains poorly understood. RESULTS: In this report, we show that the spatiotemporal expression patterns of FZD10 and WNT1/WNT3A are highly correlated. We further show that in the presence of LRP6, FZD10 promotes WNT1 and WNT3A signaling using an 8xSuperTopFlash reporter assay. Consistent with a functional role for FZD10, we demonstrate that FZD10 is required for proliferation in the spinal cord. Finally, by using an in situ proximity ligation assay, we observe an interaction between FZD10 and WNT1 and WNT3A proteins. CONCLUSIONS: Together, our results identify FZD10 as a receptor for WNT1 and WNT3A in the developing chick spinal cord.


Subject(s)
Avian Proteins/metabolism , Frizzled Receptors/metabolism , Spinal Cord/embryology , Wnt1 Protein/metabolism , Wnt3A Protein/metabolism , Animals , Chick Embryo
13.
J Biol Chem ; 287(52): 43961-71, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23124206

ABSTRACT

Phosphatidylethanolamine (PE) plays important roles for the structure and function of mitochondria and other intracellular organelles. In yeast, the majority of PE is produced from phosphatidylserine (PS) by a mitochondrion-located PS decarboxylase, Psd1p. Because PS is synthesized in the endoplasmic reticulum (ER), PS is transported from the ER to mitochondria and converted to PE. After its synthesis, a portion of PE moves back to the ER. Two mitochondrial proteins located in the intermembrane space, Ups1p and Ups2p, have been shown to regulate PE metabolism by controlling the export of PE. It remains to be determined where PS is decarboxylated in mitochondria and whether decarboxylation is coupled to trafficking of PS. Here, using fluorescent PS as a substrate in an in vitro assay for Psd1p-dependent PE production in isolated mitochondria, we show that PS is transferred from the mitochondrial outer membrane to the inner membrane independently of Psd1p, Ups1p, and Ups2p and decarboxylated to PE by Psd1p in the inner membrane. Interestingly, Ups1p is required for the maintenance of Psd1p and therefore PE production. Restoration of Psd1p levels rescued PE production defects in ups1Δ mitochondria. Our data provide novel mechanistic insight into PE biogenesis in mitochondria.


Subject(s)
Carboxy-Lyases/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Phosphatidylethanolamines/biosynthesis , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport, Active/physiology , Carboxy-Lyases/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Phosphatidylethanolamines/genetics , Phosphatidylserines/genetics , Phosphatidylserines/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
14.
J Biol Chem ; 287(19): 15205-18, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22403410

ABSTRACT

Mitochondrial membranes maintain a specific phospholipid composition. Most phospholipids are synthesized in the endoplasmic reticulum (ER) and transported to mitochondria, but cardiolipin and phosphatidylethanolamine are produced in mitochondria. In the yeast Saccharomyces cerevisiae, phospholipid exchange between the ER and mitochondria relies on the ER-mitochondria encounter structure (ERMES) complex, which physically connects the ER and mitochondrial outer membrane. However, the proteins and mechanisms involved in phospholipid transport within mitochondria remain elusive. Here, we investigated the role of the conserved intermembrane space proteins, Ups1p and Ups2p, and an inner membrane protein, Mdm31p, in phospholipid metabolism. Our data show that loss of the ERMES complex, Ups1p, and Mdm31p causes similar defects in mitochondrial phospholipid metabolism, mitochondrial morphology, and cell growth. Defects in cells lacking the ERMES complex or Ups1p are suppressed by Mdm31p overexpression as well as additional loss of Ups2p, which antagonizes Ups1p. Combined loss of the ERMES complex and Ups1p exacerbates phospholipid defects. Finally, pulse-chase experiments using [(14)C]serine revealed that Ups1p and Ups2p antagonistically regulate conversion of phosphatidylethanolamine to phosphatidylcholine. Our results suggest that Ups proteins and Mdm31p play important roles in phospholipid biosynthesis in mitochondria. Ups proteins may function in phospholipid trafficking between the outer and inner mitochondrial membranes.


Subject(s)
Intracellular Membranes/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/physiology , Phospholipids/metabolism , Saccharomyces cerevisiae Proteins/physiology , Biological Transport , Blotting, Western , Endoplasmic Reticulum/metabolism , Hydrogen-Ion Concentration , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Fluorescence , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , Phosphatidylethanolamines/metabolism , Phosphatidylserines/metabolism , Phospholipids/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Serine/metabolism
15.
Planta ; 224(5): 1163-73, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16741748

ABSTRACT

In flowering plants, post-embryonic development is mediated by the activity of shoot and root apical meristems. Shoot architecture results from activity of the shoot apical meristem (SAM), which initiates primordia, including leaves, internodes and axillary meristems, repetitively from its flanks. Axillary meristems can develop into secondary shoots or flowers. In Arabidopsis, two paralogous BEL1-like (BELL) homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), expressed in the SAM, encode DNA-binding proteins that are essential for specifying floral primordia and establishing early internode patterning events during inflorescence development. Biochemical studies show that PNY associates with the knotted1-like homeobox (KNOX) proteins, SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). PNY-BP heterodimers are essential for establishing early internode patterning events, while PNY-STM heterodimers are critical for SAM function. In this report, we examined the role of PNY, PNF and STM during development. First, we show that PNF interacts with STM and BP indicating that PNY and PNF are redundant functioning proteins. Inflorescence development, but not vegetative development, is sensitive to the dosage levels of PNY, PNF and STM. Characterization of stm-10, a weak allele in the Columbia ecotype, indicates that STM is also involved in floral specification and internode development. Our examination of the genetic requirements for PNY, PNF and STM demonstrates that these KNOX-BELL heterodimers control floral specification, internode patterning and the maintenance of boundaries between initiating floral primordia and the inflorescence meristem.


Subject(s)
Arabidopsis/growth & development , Flowering Tops/growth & development , Homeodomain Proteins/physiology , Meristem/physiology , Gene Dosage , Protein Structure, Quaternary
SELECTION OF CITATIONS
SEARCH DETAIL
...