Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Trauma Acute Care Surg ; 75(5): 767-74, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24158193

ABSTRACT

BACKGROUND: Gut-derived mediators are carried via mesenteric lymph duct into systemic circulation after trauma/hemorrhagic shock (T/HS), thus leading to acute lung injury (ALI)/multiple-organ dysfunction syndrome. Phospholipase A2 (PLA(2)) is a key enzyme for the production of lipid mediators in posthemorrhagic shock mesenteric lymph (PHSML). However, the precise functions of PLA(2) subtype, such as cytosolic PLA(2), secretory PLA(2), and Ca-independent PLA(2), in the acute phase of inflammation have remained unclear. Our previous study has suggested that the activation of Group VIB Ca-independent PLA(2γ) (PLA(2γ)) may be associated with increased lyso-phosphatidylcholines (LPCs) in the PHSML. Therefore, our purpose was to verify the role of iPLA(2γ) on the production of 2-polyunsaturated LPC species and the pathogenesis of T/HS-induced ALI using an iPLA(2γ)-specific inhibitor, R-(E)-6-(bromoethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (R-BEL). METHODS: Male Sprague-Dawley rats were anesthetized and cannulated in blood vessels and mesenteric lymph duct. Animals in the T/HS group underwent a midline laparotomy plus hemorrhagic shock (mean arterial pressure, 35 mm Hg, 30 minutes) and 2-hour resuscitation with shed blood and 2× normal saline. Trauma/sham shock rats were performed the identical procedure without hemorrhage. R-BEL or DMSO was administered 30 minutes before T/HS or trauma/sham shock. Polyunsaturated LPCs and arachidonic acid in the PHSML were analyzed with a liquid chromatography/electrospray ionization-mass spectrometry. Furthermore, ALI was assessed by lung vascular permeability, myeloperoxidase activity, and histology. RESULTS: T/HS increased 2-polyunsaturated LPCs and arachidonic acid in the PHSML. The R-BEL pretreatment significantly decreased these lipids and also inhibited ALI. CONCLUSION: The iPLA(2γ) enzyme is possibly involved in the pathogenesis of ALI following T/HS through the mesenteric lymph pathway.


Subject(s)
Acute Lung Injury/enzymology , Group IV Phospholipases A2/metabolism , Shock, Hemorrhagic/complications , Wounds and Injuries/complications , Acute Lung Injury/etiology , Acute Lung Injury/therapy , Animals , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley , Resuscitation , Shock, Hemorrhagic/metabolism , Shock, Hemorrhagic/therapy , Wounds and Injuries/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL