Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 13: 45, 2019.
Article in English | MEDLINE | ID: mdl-30837822

ABSTRACT

A brain-computer interface (BCI) translates brain signals into commands for the control of devices and for communication. BCIs enable persons with disabilities to communicate externally. Positive and negative affective sounds have been introduced to P300-based BCIs; however, how the degree of valence (e.g., very positive or positive) influences the BCI has not been investigated. To further examine the influence of affective sounds in P300-based BCIs, we applied sounds with five degrees of valence to the P300-based BCI. The sound valence ranged from very negative to very positive, as determined by Scheffe's method. The effect of sound valence on the BCI was evaluated by waveform analyses, followed by the evaluation of offline stimulus-wise classification accuracy. As a result, the late component of P300 showed significantly higher point-biserial correlation coefficients in response to very positive and very negative sounds than in response to the other sounds. The offline stimulus-wise classification accuracy was estimated from a region-of-interest. The analysis showed that the very negative sound achieved the highest accuracy and the very positive sound achieved the second highest accuracy, suggesting that the very positive sound and the very negative sound may be required to improve the accuracy.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 6766-6769, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947394

ABSTRACT

The auditory P300-based BCI was improved by changing stimuli. However, the current method needed time for recording training data. The time can be saved by the subject-to-subject transfer learning. However, the suitable classifier for the learning remains unknown. As a first step, this study compared the classifiers for the transfer learning of the BCI. They were evaluated on the dataset of a five-class affective auditory P300-based BCI. EEG data from sixteen subjects were assigned for the training, then data from the other six subjects were used for the testing. Classifiers such as the linear support-vector machine (SVM lin.), the kernel SVM (SVM RBF), the quadratic discriminant analysis were applied and compared. As a result, the SVM lin. and the SVM RBF were suitable for this problem. The best mean classification accuracy was achieved by the SVM lin. (68.7%), and a subject showed 86% accuracy at best. These results suggest that some subjects can operate the BCI without recording his/her training data.


Subject(s)
Electroencephalography , Support Vector Machine , Discriminant Analysis , Female , Humans , Learning , Male
3.
Front Neurosci ; 11: 522, 2017.
Article in English | MEDLINE | ID: mdl-28983235

ABSTRACT

Gaze-independent brain computer interfaces (BCIs) are a potential communication tool for persons with paralysis. This study applies affective auditory stimuli to investigate their effects using a P300 BCI. Fifteen able-bodied participants operated the P300 BCI, with positive and negative affective sounds (PA: a meowing cat sound, NA: a screaming cat sound). Permuted stimuli of the positive and negative affective sounds (permuted-PA, permuted-NA) were also used for comparison. Electroencephalography data was collected, and offline classification accuracies were compared. We used a visual analog scale (VAS) to measure positive and negative affective feelings in the participants. The mean classification accuracies were 84.7% for PA and 67.3% for permuted-PA, while the VAS scores were 58.5 for PA and -12.1 for permuted-PA. The positive affective stimulus showed significantly higher accuracy and VAS scores than the negative affective stimulus. In contrast, mean classification accuracies were 77.3% for NA and 76.0% for permuted-NA, while the VAS scores were -50.0 for NA and -39.2 for permuted NA, which are not significantly different. We determined that a positive affective stimulus with accompanying positive affective feelings significantly improved BCI accuracy. Additionally, an ALS patient achieved 90% online classification accuracy. These results suggest that affective stimuli may be useful for preparing a practical auditory BCI system for patients with disabilities.

4.
Front Neurosci ; 10: 446, 2016.
Article in English | MEDLINE | ID: mdl-27746716

ABSTRACT

Gaze-independent brain-computer interfaces (BCIs) are a possible communication channel for persons with paralysis. We investigated if it is possible to use auditory stimuli to create a BCI for the Japanese Hiragana syllabary, which has 46 Hiragana characters. Additionally, we investigated if training has an effect on accuracy despite the high amount of different stimuli involved. Able-bodied participants (N = 6) were asked to select 25 syllables (out of fifty possible choices) using a two step procedure: First the consonant (ten choices) and then the vowel (five choices). This was repeated on 3 separate days. Additionally, a person with spinal cord injury (SCI) participated in the experiment. Four out of six healthy participants reached Hiragana syllable accuracies above 70% and the information transfer rate increased from 1.7 bits/min in the first session to 3.2 bits/min in the third session. The accuracy of the participant with SCI increased from 12% (0.2 bits/min) to 56% (2 bits/min) in session three. Reliable selections from a 10 × 5 matrix using auditory stimuli were possible and performance is increased by training. We were able to show that auditory P300 BCIs can be used for communication with up to fifty symbols. This enables the use of the technology of auditory P300 BCIs with a variety of applications.

5.
PLoS One ; 9(4): e93045, 2014.
Article in English | MEDLINE | ID: mdl-24695550

ABSTRACT

A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance.


Subject(s)
Brain-Computer Interfaces , Brain/physiology , Female , Humans , Male
6.
Article in English | MEDLINE | ID: mdl-25569888

ABSTRACT

Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.


Subject(s)
Brain-Computer Interfaces , Evoked Potentials , Algorithms , Discriminant Analysis , Electroencephalography/methods , Humans
7.
Article in English | MEDLINE | ID: mdl-24110666

ABSTRACT

This paper demonstrates a better classification performance of an ensemble classifier using a regularized linear discriminant analysis (LDA) for P300-based brain-computer interface (BCI). The ensemble classifier with an LDA is sensitive to the lack of training data because covariance matrices are estimated imprecisely. One of the solution against the lack of training data is to employ a regularized LDA. Thus we employed the regularized LDA for the ensemble classifier of the P300-based BCI. The principal component analysis (PCA) was used for the dimension reduction. As a result, an ensemble regularized LDA classifier showed significantly better classification performance than an ensemble un-regularized LDA classifier. Therefore the proposed ensemble regularized LDA classifier is robust against the lack of training data.


Subject(s)
Brain-Computer Interfaces , Event-Related Potentials, P300 , Discriminant Analysis , Humans , Principal Component Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...