Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
Materials (Basel) ; 17(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38793323

ABSTRACT

Electrical discharge machining (EDM) is a rapidly evolving method in modern industry that manufactures highly complex components. The physical properties of a tool electrode material are significant factors in determining the effectiveness of the process, as well as the characteristics of the machined surfaces. The current trend of implementing graphite tool electrodes in manufacturing processes is observed. Innovative material engineering solutions enable graphite production with miniaturized grain size. However, the correlation between the graphite electrode grain size and the mechanism of the process removal in the EDM is a challenge for its widespread implementation in the industry. This research introduces a new method to evaluate the impact of the graphite electrode grain size and machining parameters on the material removal effectiveness, relative tool wear rate, and surface roughness (Ra) of Hastelloy C-22 following EDM with negative polarity. The study utilized new graphite materials with a grain size of 1 µm (POCO AF-5) and 10 µm (POCO EDM-180). An assessment of the impact of the EDM process parameters on the technological parameters and the development of the surface roughness was carried out. Electrical discharge machining with fine-grained graphite electrodes increases process efficiency and reduces tool wear. Graphite grains detached from the tool electrode affect the stability of electrical discharges and the efficiency of the process. Based on the experimental results, mathematical models were developed, enabling the prediction of machining effects to advance state-of-the-art manufacturing processes. The obtained mathematical models can be implemented in modern industrial EDM machines as guidelines for selecting adequate machining parameters depending on the desired process efficiency, tool wear rate, and surface roughness for advanced materials.

2.
Materials (Basel) ; 16(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687554

ABSTRACT

Additive manufacturing has garnered significant interest in various industries due to its flexibility and capability to produce parts with complex shapes. However, issues related to surface quality, such as roughness and microstructural defects, necessitate the use of post-processing techniques to achieve the desired properties. Ti6Al4V alloy, produced additively, was finished using low-energy discharges, and the new surface integrity properties resulting from the induced heat energy were investigated. To further understand the influence of discharge energy on the formation of the new layer, roughness parameters and power spectral density were used to characterize the surface topography. SEM and EDS analyses were performed to examine the morphology and microstructural defects such as microcracks. The results indicate that the heat energy induced by the discharge improved the properties of the surface. SEM analysis revealed that the new layer was characterized by a reduction in defects such as unmelted particles, the balling effect, and microcracks. At the lowest investigated discharge energy of E = 0.21 mJ, surface roughness, Sa, was reduced by about 69%, which is equal to about 2 µm, accompanied by a significant decrease in microcracks. EDS analysis indicated that the diffusion of copper and zinc from the electrode to the top surface was related to the discharge energy. Furthermore, prediction models of the influence of wire electrical discharge polishing parameters, including discharge energy, wire speed, and time interval, on the surface roughness and material removal rate (MRR) were developed using the response surface methodology.

3.
Materials (Basel) ; 16(15)2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37570179

ABSTRACT

The Selective laser melting (SLM) technology of recent years allows for building complex-shaped parts with difficult-to-cut materials such as Ti6Al4V alloy. Nevertheless, the surface integrity after SLM is characterized by surface roughness and defects in the microstructure. The use of additional finishing technology, such as machining, laser polishing, or mechanical polishing, is used to achieve desired surface properties. In this study, improving SLM Ti6Al4V alloy surface integrity using wire electrical discharge machining (WEDM) is proposed. The influence of finishing WEDM cuts and the discharge energy on the surface roughness parameters Sa, Svk, Spk, and Sk and the composition of the recast layer were investigated. The proposed finishing technology allows for significant improvement of the surface roughness by up to 88% (from Sa = 6.74 µm to Sa = 0.8 µm). Furthermore, the SEM analyses of surface morphology indicate improving surface integrity properties by removing the balling effect, unmelted particles, and the presence of microcracks. EDS analysis of the recast layer indicated a significant influence of discharge energy and the polarization of the electrode on its composition and thickness. Depending on the used discharge energy and the number of finishing cuts, changes in the composition of the material in the range of 2 to 10 µm were observed.

4.
Materials (Basel) ; 16(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36676453

ABSTRACT

Finishing operations are one of the most challenging tasks during a manufacturing process, and are responsible for achieving dimensional accuracy of the manufactured parts and the desired surface topography properties. One of the most advanced finishing technologies is grinding. However, typical grinding processes have limitations in the acquired surface topography properties, especially in finishing difficult to cut materials such as Inconel 625. To overcome this limitation, a new type of grinding wheel is proposed. The tool is made up of grains of different sizes, which results in less damage to the work surface and an enhancement in the manufacturing process. In this article, the results of an experimental study of the surface grinding process of Inconel 625 with single-granular and multi-granular wheels are presented. The influence of various input parameters on the roughness parameter (Sa) and surface topography was investigated. Statistical models of the grinding process were developed based on our research. Studies showed that with an increase in the cutting speed, the surface roughness values of the machined samples decreased (Sa = 0.9 µm for a Vc of 33 m/s for a multigranular wheel). Observation of the grinding process showed an unfavorable effect of a low grinding wheel speed on the machined surface. For both conventional and multigranular wheels, the highest value for the Sa parameter was obtained for Vc = 13 m/s. Regarding the surface topography, the observed surfaces did not show defects over large areas in the cases of both wheels. However, a smaller portion of single traces of active abrasive grains was observed in the case of the multi-granular wheel, indicating that this tool performs better finishing operations.

5.
Materials (Basel) ; 15(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36499841

ABSTRACT

Precise machining of micro parts from difficult-to-cut materials requires using advanced technology such as wire electrical discharge machining (WEDM). In order to enhance the productivity of micro WEDM, the key role is understanding the influence of process parameters on the surface topography and the material's removal rate (MRR). Furthermore, effective models which allow us to predict the influence of the parameters of micro-WEDM on the qualitative effects of the process are required. This paper influences the discharge energy, time interval, and wire speed on the surface topography's properties, namely Sa, Sk, Spk, Svk, and MRR, after micro-WEDM of Inconel 718 were described. Developed RSM and ANN model of the micro-WEDM process, showing that the discharge energy had the main influence (over 70%) on the surface topography's parameters. However, for MRR, the time interval was also significant. Furthermore, a reduction in wire speed can lead to a decrease in the cost process and have a positive influence on the environment and sustainability of the process. Evaluation of developed prediction models of micro-WEDM of Inconel 718 indicates that ANN had a lower value for the relative error compared with the RSM models and did not exceed 4%.

6.
Materials (Basel) ; 15(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36013767

ABSTRACT

Modern industry is focused on looking for new and effective technologies to manufacture complex shapes from alloys based on nickel and chromium. One of the materials widely used in the chemical and aerospace industry is Hastelloy C-22. This material is difficult to machine by conventional methods, and in many cases, unconventional methods are used to manufacture it, such as electrical discharge machining (EDM). In the EDM process, the material is removed by electrical discharges between a workpiece and a tool electrode. The physical and mechanical properties of the tool electrodes have a direct impact on the process efficiency, machining accuracy, and surface roughness. Currently, there has been a significant increase in the use of graphite as a material for tool electrodes due to the low purchase cost of the raw material, good machinability, and high sublimation temperature. In this work, an experimental investigation of the influence of the grain size of the graphite tool electrode on material removal rate (MRR), tool wear rate (TWR), and surface roughness (Ra) of Hastelloy C-22 was carried out. Two POCO graphite tool electrodes with a grain size of 1 µm (AF-5) and 10 µm (S-180) were used. Based on the experimental studies, empirical models describing the influence of machining parameters on technological indicators and the condition of the surface texture were determined. The research indicates that graphite with a larger grain provides higher process efficiency with high relative wear of the tool electrode. The lowest surface roughness was obtained for graphite with a smaller grain size (AF-5). The analysis of the machining parameters proves that the discharge current and pulse duration are the main factors determining the MRR and Ra values for both AF-5 and S-180 graphite. The time interval is the dominant parameter with regard to the relative wear of the graphite electrode.

7.
Materials (Basel) ; 16(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36614640

ABSTRACT

The industrial application of electrical discharge machining (EDM) for manufacturing injection molding, in many cases, requires forming depth cavities with high length-to-width ratios, which is quite challenging. During slot EDM with thin-walled electrodes, short-circuits and arcing discharges occur, as a result of low efficiency in removing debris and bubble gas from the gap. Furthermore, unstable discharges can cause increases in tool wear and shape deviation of the machined parts. In order to characterize the influence of the type of electrode material and EDM parameters on the deep slot machining of high-thermal-conductivity tool steel (HTCS), experimental studies were conducted. An analytical and experimental investigation is carried out on the influence of EDM parameters on discharge current and pulse-on-time on the tool wear (TW), surface roughness (Ra), slot width (S)-dimension of the cavity, and material removal rate (MRR). The analyses of the EDS spectrum of the electrode indicate the occurrence of the additional carbon layer on the electrode. Carbon deposition on the anode surface can provide an additional thermal barrier that reduces electrode wear in the case of the copper electrode but for graphite electrodes, uneven deposition of carbon on the electrode leads to unstable discharges and leads to increase tool wear. The response surface methodology (RSM) was used to build empirical models of the influence of the discharge current I and pulse-on-time ton on Ra, S, TW, and MRR. Analysis of variance (ANOVA) was used to establish the statistical significance parameters. The calculated contribution indicated that the discharge current had the most influence (over 70%) on the Ra, S, TW, and MRR, followed by the discharge time. Multicriteria optimization with Derringer's function was then used to minimize the surface roughness, slot width, and TW, while maximizing MRR. A validation test confirms that the maximal error between the predicted and obtained values did not exceed 7%.

8.
Materials (Basel) ; 12(6)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901872

ABSTRACT

Electrical discharge machining (EDM) is an advanced technology used to manufacture difficult-to-cut conductive materials. However, the surface layer properties after EDM require additional finishing operations in many cases. Therefore, new methods implemented in EDM are being developed to improve surface characteristics and the material removal rate. This paper presents new research about improving the surface integrity of 55NiCrMoV7 tool steel by using reduced graphene oxide (RGO) flakes in the dielectric. The main goal of the research was to investigate the influence of RGO flakes in the dielectric on electrical discharge propagation and heat dissipation in the gap. The investigation of the influence of discharge current I and pulse time ton during EDM with RGO flakes in the dielectric was carried out using response surface methodology. Furthermore, the surface texture properties and metallographic structure after EDM with RGO in the dielectric and conventional EDM were investigated and described. The obtained results indicate that using RGO flakes in the dielectric leads to a decreased surface roughness and recast layer thickness with an increased material removal rate (MRR). The presence of RGO flakes in the dielectric reduced the breakdown voltage and allowed several discharges to occur during one pulse. The dispersion of the discharge caused a decrease in the energy delivered to the workpiece. In terms of the finishing EDM parameters, there was a 460% reduction in roughness Ra with a uniform distribution of the recast layer on the surface, and a slight increase in MRR (12%) was obtained.

9.
Sports (Basel) ; 7(3)2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901899

ABSTRACT

Electrical discharge machining (EDM) is an advanced technology used to manufacture difficult-to-cut conductive materials. However, the surface layer properties after EDM require additional finishing operations in many cases. Therefore, new methods implemented in EDM are being developed to improve surface characteristics and the material removal rate. This paper presents new research about improving the surface integrity of 55NiCrMoV7 tool steel by using reduced graphene oxide (RGO) flakes in the dielectric. The main goal of the research was to investigate the influence of RGO flakes in the dielectric on electrical discharge propagation and heat dissipation in the gap. The investigation of the influence of discharge current I and pulse time ton during EDM with RGO flakes in the dielectric was carried out using response surface methodology. Furthermore, the surface texture properties and metallographic structure after EDM with RGO in the dielectric and conventional EDM were investigated and described. The obtained results indicate that using RGO flakes in the dielectric leads to a decreased surface roughness and recast layer thickness with an increased material removal rate (MRR). The presence of RGO flakes in the dielectric reduced the breakdown voltage and allowed several discharges to occur during one pulse. The dispersion of the discharge caused a decrease in the energy delivered to the workpiece. In terms of the finishing EDM parameters, there was a 460% reduction in roughness Ra with a uniform distribution of the recast layer on the surface, and a slight increase in MRR (12%) was obtained.

10.
Nanomaterials (Basel) ; 9(3)2019 Mar 02.
Article in English | MEDLINE | ID: mdl-30832322

ABSTRACT

Electrical discharge machining (EDM) is a nonconventional technology that is frequently used in manufacturing for difficult-to-cut conductive materials. Drawbacks to using EDM include the resulting surface roughness and integrity. One of the recent innovations for improving surface integrity with EDM is the use of a powder mixed dielectric. The aim of this study is to analyze the influence of having reduced graphene oxide (RGO) in the dielectric on the ionization of the plasma channel and the dispersion of electrical discharges. The main goal is to improve the surface integrity of the tool steel 55NiCrMoV7 during finishing machining. To achieve this goal, an experimental investigation was carried out to establish the smallest possible values of discharge current and pulse time at which it is possible to initiate an electric discharge, which causes material removal. Next, the effect of the direction of the electric discharges (electrode polarity) and the concentration (percentage) of RGO in the dielectric on surface integrity was investigated. The results of this experiment indicate that during EDM with RGO, the discharges are dispersed on the RGO flakes. This leads to a multiplication of the discharges during a single pulse, and this strongly affects the surface integrity. The obtained results indicate that it is possible to reduce surface roughness and thickness of the recast layer by approximately 2.5 times compared with conventional EDM.

11.
Micromachines (Basel) ; 10(1)2019 Jan 20.
Article in English | MEDLINE | ID: mdl-30669518

ABSTRACT

Electrical discharge machining (EDM) is a modern technology that is widely used in the production of difficult to cut conductive materials. The basic problem of EDM is the stochastic nature of electrical discharges. The optimal selection of machining parameters to achieve micron surface roughness and the recast layer with the maximal possible value of the material removal rate (MRR) is quite challenging. In this paper, we performed an analytical and experimental investigation of the influence of the EDM parameters: Surface integrity and MRR. Response surface methodology (RSM) was used to build empirical models on the influence of the discharge current I, pulse time ton, and the time interval toff, on the surface roughness (Sa), the thickness of the white layer (WL), and the MRR, during the machining of tool steel 55NiCrMoV7. The surface and subsurface integrity were evaluated using an optical microscope and a scanning profilometer. Analysis of variance (ANOVA) was used to establish the statistical significance parameters. The calculated contribution indicated that the discharge current had the most influence (over the 50%) on the Sa, WL, and MRR, followed by the discharge time. The multi-response optimization was carried out using the desirability function for the three cases of EDM: Finishing, semi-finishing, and roughing. The confirmation test showed that maximal errors between the predicted and the obtained values did not exceed 6%.

SELECTION OF CITATIONS
SEARCH DETAIL