Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 63(12): 5, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36326727

ABSTRACT

Purpose: Uveal coloboma is a congenital eye malformation caused by failure of the optic fissure to close in early human development. Despite significant progress in identifying genes whose regulation is important for executing this closure, mutations are detected in a minority of cases using known gene panels, implying additional genetic complexity. We have previously shown knockdown of znf503 (the ortholog of mouse Zfp503) in zebrafish causes coloboma. Here we characterize Zfp503 knockout (KO) mice and evaluate transcriptomic profiling of mutant versus wild-type (WT) retinal pigment epithelium (RPE)/choroid. Methods: Zfp503 KO mice were generated by gene targeting using homologous recombination. Embryos were characterized grossly and histologically. Patterns and level of developmentally relevant proteins/genes were examined with immunostaining/in situ hybridization. The transcriptomic profile of E11.5 KO RPE/choroid was compared to that of WT. Results: Zfp503 is dynamically expressed in developing mouse eyes, and loss of its expression results in uveal coloboma. KO embryos exhibit altered mRNA levels and expression patterns of several key transcription factors involved in eye development, including Otx2, Mitf, Pax6, Pax2, Vax1, and Vax2, resulting in a failure to maintain the presumptive RPE, as evidenced by reduced melanin pigmentation and its differentiation into a neural retina-like lineage. Comparison of RNA sequencing data from WT and KO E11.5 embryos demonstrated reduced expression of melanin-related genes and significant overlap with genes known to be dynamically regulated at the optic fissure. Conclusions: These results demonstrate a critical role of Zfp503 in maintaining RPE fate and optic fissure closure.


Subject(s)
Coloboma , Neuropeptides , Animals , Humans , Mice , Coloboma/genetics , Coloboma/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Melanins/metabolism , Mice, Knockout , Nerve Tissue Proteins/genetics , Neuropeptides/genetics , Retina/metabolism , Retinal Pigment Epithelium/metabolism , Zebrafish/genetics
2.
Invest Ophthalmol Vis Sci ; 59(12): 4945-4952, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30347088

ABSTRACT

Purpose: Oral nitisinone has been shown to increase fur and ocular pigmentation in a mouse model of oculocutaneous albinism (OCA) due to hypomorphic mutations in tyrosinase (TYR), OCA1B. This study determines if nitisinone can improve ocular and/or fur pigmentation in a mouse model of OCA type 3 (OCA3), caused by mutation of the tyrosinase-related protein 1 (Tyrp1) gene. Methods: Mice homozygous for a null allele in the Tyrp1 gene (C57BL/6J-Tyrp1 b-J/J) were treated with 8 mg/kg nitisinone or vehicle every other day by oral gavage. Changes in fur and ocular melanin pigmentation were monitored. Mature ocular melanosome number and size were quantified in pigmented ocular structures by electron microscopy. Results: C57BL/6J-Tyrp1 b-J/J mice carry a novel c.403T>A; 404delG mutation in Tyrp1, predicted to result in premature truncation of the TYRP1 protein. Nitisinone treatment resulted in an approximately 7-fold increase in plasma tyrosine concentrations without overt toxicity. After 1 month of treatment, no change in the color of fur or pigmented ocular structures was observed. The distribution of melanosome cross-sectional area was unchanged in ocular tissues. There was no significant difference in the number of pigmented melanosomes in the RPE/choroid of nitisinone-treated and control groups. However, there was a significant difference in the number of pigmented melanosomes in the iris. Conclusions: Treatment of a mouse model of OCA3 with oral nitisinone did not have a favorable clinical effect on melanin production and minimally affected the number of pigmented melanosomes in the iris stroma. As such, treatment of OCA3 patients with nitisinone is unlikely to be therapeutic.


Subject(s)
Albinism, Oculocutaneous/drug therapy , Cyclohexanones/therapeutic use , Enzyme Inhibitors/therapeutic use , Nitrobenzoates/therapeutic use , Administration, Oral , Albinism, Oculocutaneous/blood , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/pathology , Animals , Blotting, Western , Disease Models, Animal , Genotyping Techniques , Melanins/metabolism , Melanosomes/pathology , Membrane Glycoproteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Microscopy, Electron, Transmission , Oxidoreductases/genetics , Real-Time Polymerase Chain Reaction , Treatment Outcome , Tyrosine/blood
3.
J Clin Invest ; 121(10): 3914-23, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21968110

ABSTRACT

Mutation of the tyrosinase gene (TYR) causes oculocutaneous albinism, type 1 (OCA1), a condition characterized by reduced skin and eye melanin pigmentation and by vision loss. The retinal pigment epithelium influences postnatal visual development. Therefore, increasing ocular pigmentation in patients with OCA1 might enhance visual function. There are 2 forms of OCA1, OCA-1A and OCA-1B. Individuals with the former lack functional tyrosinase and therefore lack melanin, while individuals with the latter produce some melanin. We hypothesized that increasing plasma tyrosine concentrations using nitisinone, an FDA-approved inhibitor of tyrosine degradation, could stabilize tyrosinase and improve pigmentation in individuals with OCA1. Here, we tested this hypothesis in mice homozygous for either the Tyrc-2J null allele or the Tyrc-h allele, which model OCA-1A and OCA-1B, respectively. Only nitisinone-treated Tyrc-h/c-h mice manifested increased pigmentation in their fur and irides and had more pigmented melanosomes. High levels of tyrosine improved the stability and enzymatic function of the Tyrc-h protein and also increased overall melanin levels in melanocytes from a human with OCA-1B. These results suggest that the use of nitisinone in OCA-1B patients could improve their pigmentation and potentially ameliorate vision loss.


Subject(s)
Albinism, Oculocutaneous/drug therapy , Cyclohexanones/therapeutic use , Eye Color/drug effects , Nitrobenzoates/therapeutic use , Skin Pigmentation/drug effects , Albinism, Oculocutaneous/genetics , Albinism, Oculocutaneous/physiopathology , Animals , Disease Models, Animal , Enzyme Inhibitors/therapeutic use , Enzyme Stability/drug effects , Enzyme Stability/genetics , Eye Color/genetics , Eye Color/physiology , Female , Humans , Melanins/metabolism , Melanocytes/drug effects , Melanocytes/metabolism , Melanocytes/ultrastructure , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Microscopy, Electron, Transmission , Models, Molecular , Monophenol Monooxygenase/chemistry , Monophenol Monooxygenase/deficiency , Monophenol Monooxygenase/genetics , Mutation , Pregnancy , Skin Pigmentation/genetics , Skin Pigmentation/physiology , Tyrosine/metabolism
4.
PLoS Genet ; 6(3): e1000870, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20221250

ABSTRACT

Papillorenal syndrome (PRS, also known as renal-coloboma syndrome) is an autosomal dominant disease characterized by potentially-blinding congenital optic nerve excavation and congenital kidney abnormalities. Many patients with PRS have mutations in the paired box transcription factor gene, PAX2. Although most mutations in PAX2 are predicted to result in complete loss of one allele's function, three missense mutations have been reported, raising the possibility that more subtle alterations in PAX2 function may be disease-causing. To date, the molecular behaviors of these mutations have not been explored. We describe a novel mouse model of PRS due to a missense mutation in a highly-conserved threonine residue in the paired domain of Pax2 (p.T74A) that recapitulates the ocular and kidney findings of patients. This mutation is in the Pax2 paired domain at the same location as two human missense mutations. We show that all three missense mutations disrupt potentially critical hydrogen bonds in atomic models and result in reduced Pax2 transactivation, but do not affect nuclear localization, steady state mRNA levels, or the ability of Pax2 to bind its DNA consensus sequence. Moreover, these mutations show reduced steady-state levels of Pax2 protein in vitro and (for p.T74A) in vivo, likely by reducing protein stability. These results suggest that hypomorphic alleles of PAX2/Pax2 can lead to significant disease in humans and mice.


Subject(s)
Abnormalities, Multiple/genetics , Alleles , Mutation, Missense/genetics , PAX2 Transcription Factor/genetics , Amino Acid Sequence , Animals , Cell Line , Cerebellum/pathology , DNA/metabolism , Embryo, Mammalian/pathology , Eye/pathology , Gene Expression Regulation, Developmental , Humans , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , PAX2 Transcription Factor/chemistry , PAX2 Transcription Factor/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Structural Homology, Protein , Syndrome , Time Factors
5.
Proc Natl Acad Sci U S A ; 106(5): 1462-7, 2009 Feb 03.
Article in English | MEDLINE | ID: mdl-19171890

ABSTRACT

The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. Here, we profile global gene expression during optic fissure closure using laser capture microdissected (LCM) tissue from the margins of the fissure. From these data, we identify a unique role for the C(2)H(2) zinc finger proteins Nlz1 and Nlz2 in normal fissure closure. Gene knockdown of nlz1 and/or nlz2 in zebrafish leads to a failure of the optic fissure to close, a phenotype which closely resembles that seen in human uveal coloboma. We also identify misregulation of pax2 in the developing eye of morphant fish, suggesting that Nlz1 and Nlz2 act upstream of the Pax2 pathway in directing proper closure of the optic fissure.


Subject(s)
DNA-Binding Proteins/genetics , Eye/embryology , Gene Expression Profiling , Repressor Proteins/genetics , Zebrafish Proteins/genetics , Animals , Base Sequence , Coloboma/genetics , DNA Primers , Gene Expression Regulation, Developmental , In Situ Hybridization , PAX2 Transcription Factor/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic , RNA, Messenger/genetics , Zebrafish , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL