Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS Negl Trop Dis ; 16(3): e0010214, 2022 03.
Article in English | MEDLINE | ID: mdl-35239658

ABSTRACT

BACKGROUND: Coxiella burnetii is a widely distributed pathogen, but data on its epidemiology in livestock, and human populations remain scanty, especially in developing countries such as Kenya. We used the One Health approach to estimate the seroprevalance of C. burnetii in cattle, sheep, goats and human populations in Tana River county, and in humans in Garissa county, Kenya. We also identified potential determinants of exposure among these hosts. METHODS: Data were collected through a cross-sectional study. Serum samples were taken from 2,727 animals (466 cattle, 1,333 goats, and 928 sheep) and 974 humans and screened for Phase I/II IgG antibodies against C. burnetii using enzyme-linked immunosorbent assay (ELISA). Data on potential factors associated with animal and human exposure were collected using a structured questionnaire. Multivariable analyses were performed with households as a random effect to adjust for the within-household correlation of C. burnetii exposure among animals and humans, respectively. RESULTS: The overall apparent seroprevalence estimates of C. burnetii in livestock and humans were 12.80% (95% confidence interval [CI]: 11.57-14.11) and 24.44% (95% CI: 21.77-27.26), respectively. In livestock, the seroprevalence differed significantly by species (p < 0.01). The highest seroprevalence estimates were observed in goats (15.22%, 95% CI: 13.34-17.27) and sheep (14.22%, 95% CI: 12.04-16.64) while cattle (3.00%, 95% CI: 1.65-4.99) had the lowest seroprevalence. Herd-level seropositivity of C. burnetii in livestock was not positively associated with human exposure. Multivariable results showed that female animals had higher odds of seropositivity for C. burnetii than males, while for animal age groups, adult animals had higher odds of seropositivity than calves, kids or lambs. For livestock species, both sheep and goats had significantly higher odds of seropositivity than cattle. In human populations, men had a significantly higher odds of testing positive for C. burnetii than women. CONCLUSIONS: This study provides evidence of livestock and human exposure to C. burnetii which could have serious economic implications on livestock production and impact on human health. These results also highlight the need to establish active surveillance in the study area to reduce the disease burden associated with this pathogen.


Subject(s)
Coxiella burnetii , Q Fever , Animals , Cattle , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Goats , Humans , Kenya/epidemiology , Livestock , Male , Q Fever/epidemiology , Q Fever/veterinary , Risk Factors , Seroepidemiologic Studies , Sheep , Surveys and Questionnaires
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1828): 20200047, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33993755

ABSTRACT

Human societies are structured by what we refer to as 'institutions', which are socially created and culturally inherited proscriptions on behaviour that define roles and set expectations about social interactions. The study of institutions in several social science fields has provided many important insights that have not been fully appreciated in the evolutionary human sciences. However, such research has often lacked a shared understanding of general processes of change that shape institutional diversity across space and time. We argue that evolutionary theory can provide a useful framework for synthesizing information from different disciplines to address issues such as how and why institutions change over time, how institutional rules co-evolve with other culturally inherited traits, and the role that ecological factors might play in shaping institutional diversity. We argue that we can gain important insights by applying cultural evolutionary thinking to the study of institutions, but that we also need to expand and adapt our approaches to better handle the ways that institutions work, and how they might change over time. In this paper, we illustrate our approach by describing macro-scale empirical comparative analyses that demonstrate how evolutionary theory can be used to generate and test hypotheses about the processes that have shaped some of the major patterns we see in institutional diversity over time and across the world today. We then go on to discuss how we might usefully develop micro-scale models of institutional change by adapting concepts from game theory and agent-based modelling. We end by considering current challenges and areas for future research, and the potential implications for other areas of study and real-world applications. This article is part of the theme issue 'Foundations of cultural evolution'.


Subject(s)
Cultural Evolution , Game Theory , Humans , Models, Psychological
3.
PLoS Negl Trop Dis ; 13(10): e0007506, 2019 10.
Article in English | MEDLINE | ID: mdl-31622339

ABSTRACT

BACKGROUND: Brucella spp. is a zoonotic bacterial agent of high public health and socio-economic importance. It infects many species of animals including wildlife, and people may get exposed through direct contact with an infected animal or consumption of raw or undercooked animal products. A linked livestock-human cross-sectional study to determine seroprevalences and risk factors of brucellosis in livestock and humans was designed. Estimates were made for intra-cluster correlation coefficients (ICCs) for these observations at the household and village levels. METHODOLOGY: The study was implemented in Garissa (specifically Ijara and Sangailu areas) and Tana River (Bura and Hola) counties. A household was the unit of analysis and the sample size was derived using the standard procedures. Serum samples were obtained from selected livestock and people from randomly selected households. Humans were sampled in both counties, while livestock could be sampled only in Tana River County. Samples obtained were screened for anti-Brucella IgG antibodies using ELISA kits. Data were analyzed using generalized linear mixed effects logistic regression models with the household (herd) and village being used as random effects. RESULTS: The overall Brucella spp. seroprevalences were 3.47% (95% confidence interval [CI]: 2.72-4.36%) and 35.81% (95% CI: 32.87-38.84) in livestock and humans, respectively. In livestock, older animals and those sampled in Hola had significantly higher seroprevalences than younger ones or those sampled in Bura. Herd and village random effects were significant and ICC estimates associated with these variables were 0.40 (95% CI: 0.22-0.60) and 0.24 (95% CI: 0.08-0.52), respectively. In humans, Brucella spp. seroprevalence was significantly higher in older people, males, and people who lived in pastoral areas than younger ones, females or those who lived in irrigated or riverine areas. People from households that had at least one seropositive animal were 3.35 (95% CI: 1.51-7.41) times more likely to be seropositive compared to those that did not. Human exposures significantly clustered at the household level; the ICC estimate obtained was 0.21 (95% CI: 0.06-0.52). CONCLUSION: The presence of a Brucella spp.-seropositive animal in a household significantly increased the odds of Brucella spp. seropositivity in humans in that household. Exposure to Brucella spp. of both livestock and humans clustered significantly at the household level. This suggests that risk-based surveillance measures, guided by locations of primary cases reported, either in humans or livestock, can be used to detect Brucella spp. infections in livestock or humans, respectively.


Subject(s)
Brucellosis/epidemiology , Brucellosis/immunology , Brucellosis/veterinary , Livestock/microbiology , Seroepidemiologic Studies , Adolescent , Adult , Animals , Antibodies, Bacterial/blood , Brucella , Brucellosis/microbiology , Cross-Sectional Studies , Female , Humans , Immunoglobulin G/blood , Kenya/epidemiology , Logistic Models , Male , Risk Factors , Rivers , Surveys and Questionnaires , Young Adult , Zoonoses/epidemiology , Zoonoses/microbiology
4.
PLoS One ; 12(5): e0172626, 2017.
Article in English | MEDLINE | ID: mdl-28562600

ABSTRACT

To investigate the effects of irrigation on land cover changes and the risk of selected zoonotic pathogens, we carried out a study in irrigated, pastoral and riverine areas in the eastern Kenya. Activities implemented included secondary data analyses to determine land use and land cover (LULC) changes as well as human, livestock and wildlife population trends; entomological surveys to characterize mosquitoes population densities and species distribution by habitat and season; and serological surveys in people to determine the risk of Rift Valley fever virus (RVFV), West Nile fever virus (WNV), dengue fever virus (DFV), Leptospira spp. and Brucella spp. Results demonstrate a drastic decline in vegetation cover over ≈25 years particularly in the irrigated areas where cropland increased by about 1,400% and non-farm land (under closed trees, open to closed herbaceous vegetation, bushlands and open trees) reduced by 30-100%. The irrigated areas had high densities of Aedes mcintoshi, Culex spp. and Mansonia spp. (important vectors for multiple arboviruses) during the wet and dry season while pastoral areas had high densities of Ae. tricholabis specifically in the wet season. The seroprevalences of RVFV, WNV and DFV were higher in the irrigated compared to the pastoral areas while those for Leptospira spp and Brucella spp. were higher in the pastoral compared to the irrigated areas. It is likely that people in the pastoral areas get exposed to Leptospira spp by using water fetched from reservoirs that are shared with livestock and wildlife, and to Brucella spp. by consuming raw or partially cooked animal-source foods such as milk and meat. This study suggests that irrigation increases the risk of mosquito-borne infections while at the same time providing a protective effect against zoonotic pathogens that thrive in areas with high livestock population densities.


Subject(s)
Floods , Zoonoses/epidemiology , Animals , Humans , Kenya , Risk Factors , Zoonoses/microbiology
5.
Environ Manage ; 60(2): 185-199, 2017 08.
Article in English | MEDLINE | ID: mdl-28508127

ABSTRACT

Landscape approaches can be subjected to mistakenly targeting a single "best" level of governance, and paying too little attention to the role that cross-scale and cross-level interactions play in governance. In rangeland settings, resources, patterns of use of those resources, and the institutions for managing the resources exist at multiple levels and scales. While the scholarship on commons offers some guidance on how to conceptualize governance in rangeland landscapes, some elements of commons scholarship-notably the "design principles" for effective governance of commons-do not seem to apply neatly to governance in pastoralist rangeland settings. This paper examines three cases where attempts have been made to foster effective landscape governance in such settings to consider how the materiality of commons influences the nature of cross-scale and cross-level interactions, and how these interactions affect governance. In all three cases, although external actors seemed to work appropriately and effectively at community and landscape levels, landscape governance mechanisms have been facing great challenges arising from relationships beyond the landscape, both vertically to higher levels of decision-making and horizontally to communities normally residing in other landscapes. The cases demonstrate that fostering effective landscape-level governance cannot be accomplished only through action at the landscape level; it is a task that must be pursued at multiple levels and in relation to the connections across scales and levels. The paper suggests elements of a conceptual framework for understanding cross-level and cross-scale elements of landscape governance, and offers suggestions for governance design in pastoralist rangeland settings.


Subject(s)
Conservation of Natural Resources/methods , Government Programs/organization & administration , Conservation of Natural Resources/legislation & jurisprudence , Decision Making, Organizational , Desert Climate , Ecosystem , Environmental Policy , Ethiopia , Humans , Kenya , Residence Characteristics
6.
BMC Infect Dis ; 16(1): 696, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27881079

ABSTRACT

BACKGROUND: West Nile fever virus is a zoonotic arboviral infection maintained in a sylvatic cycle involving mosquito vectors and birds. It is one the arboviruses whose geographical range is expanding because of climate and land use changes that enhance the densities of mosquitoes and promote mosquito-bird-human interactions. We carried out a survey to determine the reservoirs of WNV among wild birds in Tana River and Garissa counties, Kenya. METHODS: Blood samples were obtained from 361 randomly trapped wild birds. Using real-time polymerase chain reaction (PCR), all samples were screened for WNV using gene specific primer sets amplifying a portion of the E region of the genome encoding the envelope protein. RESULTS: Sixty five (65) out of 361 birds screened tested positive for WNV on real-time PCR assay. Sequencing of the selected positive samples reveals that the isolated WNV were most closely related to strains isolated from China (2011). A regression analysis indicated that sampling location influenced the occurrence of WNV while species, age, weight and sex of the birds did not have any effect. CONCLUSIONS: This study provides baseline information on the existing circulation of WNV in this region among wild bird reservoirs that could spill over to the human population and points to the need for implementation of surveillance programs to map the distribution of the virus among reservoirs. Awareness creation about West Nile fever in this region is important to improve its detection and management.


Subject(s)
Animals, Wild/virology , Birds/virology , Disease Reservoirs/virology , West Nile virus/isolation & purification , Animals , DNA, Viral/analysis , Kenya , Real-Time Polymerase Chain Reaction , West Nile virus/classification , West Nile virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...