Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Res Notes ; 11(1): 657, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30201041

ABSTRACT

OBJECTIVES: Acute febrile illness is a common cause of hospital admission, and its associated infectious causes, of which a key bacterial causative agent is Streptococcus pneumoniae, contribute to substantial morbidity and mortality. We sought to evaluate the utility of real-time (rt)-PCR on dried blood spots (DBS) for diagnosis of S. pneumoniae in acute febrile illness among children presenting to hospitals in Nigeria. We previously described preliminary results in a sample of 537 patients. Here we present data from a larger collection of 1038 patients. RESULTS: Using rt-PCR for Streptococcus pneumoniae on 1038 dried blood spots from children prospectively enrolled with acute febrile illness, including 79 healthy controls, we detected pneumococcal DNA in nine of 15 blood culture-positive specimens, one culture-negative specimen from a high-risk group, a culture-confirmed non-pneumococcal specimen and a healthy control. Six culture-positive isolates (40%) were negative. Sensitivity was 60%, specificity 99.7%, positive predictive value 75% and negative predictive value 99.4%. Rt-PCR of DBS has limited sensitivity in blood specimens from acute febrile illness in children.


Subject(s)
Fever/diagnosis , Real-Time Polymerase Chain Reaction , Streptococcus pneumoniae/genetics , Belgium , Child, Preschool , Humans , Infant , Nigeria , Sensitivity and Specificity , Streptococcus pneumoniae/isolation & purification
2.
PLoS One ; 11(3): e0152253, 2016.
Article in English | MEDLINE | ID: mdl-27007889

ABSTRACT

BACKGROUND: Nigeria has one of the highest burdens of pneumococcal disease in the world, but accurate surveillance is lacking. Molecular detection of infectious pathogens in dried blood spots (DBS) is an ideal method for surveillance of infections in resource-limited settings because of its low cost, minimal blood volumes involved, and ease of storage at ambient temperature. Our study aim was to evaluate a Streptococcus pneumoniae real-time polymerase chain reaction (rt-PCR) assay on DBS from febrile Nigerian children on Whatman 903 and FTA filter papers, compared to the gold standard of culture. METHODS: Between September 2011 to May 2015, blood was collected from children 5 years of age or under who presented to six hospital study sites throughout northern and central Nigeria with febrile illness, and inoculated into blood culture bottles or spotted onto Whatman 903 or FTA filter paper. Culture and rt-PCR were performed on all samples. RESULTS: A total of 537 DBS specimens from 535 children were included in the study, of which 15 were culture-positive for S. pneumoniae. The rt-PCR assay detected S. pneumoniae in 12 DBS specimens (2.2%). One positive rt-PCR result was identified in a culture-negative specimen from a high-risk subject, and two positive rt-PCR results were negative on repeat testing. Six culture-confirmed cases of S. pneumoniae bacteremia were missed. Compared to culture, the overall sensitivities of Whatman 903 and FTA DBS for detection of S. pneumoniae were 57.1% (95% CI 18.4-90.1%) and 62.5% (95% CI 24.5-91.5%), respectively. Nonspecific amplification was noted in an additional 22 DBS (4.1%). Among these, six were positive for a non-S. pneumoniae pathogen on culture. CONCLUSIONS: Rt-PCR was able to detect S. pneumoniae from clinical DBS specimens, including from a culture-negative specimen. Our findings show promise of this approach as a surveillance diagnostic, but also raise important cautionary questions. Several DBS specimens were detected as S. pneumoniae by rt-PCR despite growth of a non-S. pneumoniae pathogen on culture. A precise definition of what constitutes a positive result is required to avoid falsely over-identifying specimens.


Subject(s)
Dried Blood Spot Testing/methods , Pneumococcal Infections/diagnosis , Bacteriological Techniques , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Nigeria , Pneumococcal Infections/blood , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Streptococcus pneumoniae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...