Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293431

ABSTRACT

Cerebral cavernous malformation (CCM) is a neurovascular disease that affects 0.5% of the general population. For a long time, CCM research focused on genetic mutations, endothelial junctions and proliferation, but recently, transcriptome and proteome studies have revealed that the hemostatic system and neuroinflammation play a crucial role in the development and severity of cavernomas, with some of these publications coming from our group. The aim of this review is to give an overview of the latest molecular insights into the interaction between CCM-deficient endothelial cells with blood components and the neurovascular unit. Specifically, we underscore how endothelial dysfunction can result in dysregulated hemostasis, bleeding, hypoxia and neurological symptoms. We conducted a thorough review of the literature and found a field that is increasingly poised to regard CCM as a hemostatic disease, which may have implications for therapy.


Subject(s)
Hemangioma, Cavernous, Central Nervous System , Hemostatics , Humans , Hemangioma, Cavernous, Central Nervous System/genetics , Endothelial Cells , Thromboinflammation , Proteome , Hemostasis
3.
Cell Mol Life Sci ; 79(4): 206, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35333979

ABSTRACT

Cerebral Cavernous Malformation (CCM) is a brain vascular disease with various neurological symptoms. In this study, we describe the inflammatory profile in CCM and show for the first time the formation of neutrophil extracellular traps (NETs) in rodents and humans with CCM. Through RNA-seq analysis of cerebellum endothelial cells from wild-type mice and mice with an endothelial cell-specific ablation of the Ccm3 gene (Ccm3iECKO), we show that endothelial cells from Ccm3iECKO mice have an increased expression of inflammation-related genes. These genes encode proinflammatory cytokines and chemokines, as well as adhesion molecules, which promote recruitment of inflammatory and immune cells. Similarly, immunoassays showed elevated levels of these cytokines and chemokines in the cerebellum of the Ccm3iECKO mice. Consistently, both flow cytometry and immunofluorescence analysis showed infiltration of different subsets of leukocytes into the CCM lesions. Neutrophils, which are known to fight against infection through different strategies, including the formation of NETs, represented the leukocyte subset within the most pronounced increase in CCM. Here, we detected elevated levels of NETs in the blood and the deposition of NETs in the cerebral cavernomas of Ccm3iECKO mice. Degradation of NETs by DNase I treatment improved the vascular barrier. The deposition of NETs in the cavernomas  of patients with CCM confirms the clinical relevance of NETs in CCM.


Subject(s)
Extracellular Traps , Hemangioma, Cavernous, Central Nervous System , Animals , Apoptosis Regulatory Proteins/genetics , Endothelial Cells/metabolism , Extracellular Traps/metabolism , Hemangioma, Cavernous, Central Nervous System/genetics , Hemangioma, Cavernous, Central Nervous System/metabolism , Hemangioma, Cavernous, Central Nervous System/pathology , Humans , Inflammation/pathology , Membrane Proteins/metabolism , Mice
4.
SLAS Discov ; 24(5): 587-596, 2019 06.
Article in English | MEDLINE | ID: mdl-30802413

ABSTRACT

Many factors must be considered during the optimization of an enzyme assay. These include the choice of buffer and its composition, the type of enzyme and its concentration, as well as the type of substrate and concentrations, the reaction conditions, and the appropriate assay technology. The process of an enzyme assay optimization, in our experience, can take more than 12 weeks using the traditional one-factor-at-a-time approach. In contrast, the design of experiments (DoE) approaches have the potential to speed up the assay optimization process and provide a more detailed evaluation of tested variables. However, not all researchers are aware of DoE approaches or believe that it is easy to employ a DoE approach for the optimization of an assay. In order to facilitate enzyme assay developers to use DoE methodologies, we present in detail the steps required to identify in less than 3 days (1) the factors that significantly affect the activity of an enzyme and (2) the optimal assay conditions using a fractional factorial approach and response surface methodology. This is exemplified with the optimization of assay conditions for the human rhinovirus-3C protease, and the methodology used could be employed as a basic guide for the speedy identification of the optimum assay conditions for any enzyme.


Subject(s)
Biological Assay/methods , Cysteine Endopeptidases/chemistry , Enzyme Assays/methods , Viral Proteins/chemistry , 3C Viral Proteases , Humans , Research Design , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...