Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Genet Metab ; 136(3): 186-189, 2022 07.
Article in English | MEDLINE | ID: mdl-35148957

ABSTRACT

Despite progress in understanding of the genetic basis of gout, the precise factors affecting differences in gout susceptibility among different gout subtypes remain unclear. Using clinically diagnosed gout patients, we conducted a genome-wide meta-analysis of two distinct gout subtypes: the renal overload type and the renal underexcretion type. We provide genetic evidence at a genome-wide level of significance that supports a positive association between ABCG2 dysfunction and acquisition of the renal overload type.


Subject(s)
Genetic Predisposition to Disease , Gout , Gout/genetics , Humans , Japan , Kidney , Polymorphism, Single Nucleotide
2.
Hum Cell ; 34(2): 293-299, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33517564

ABSTRACT

Gout is a common type of acute arthritis that results from elevated serum uric acid (SUA) levels. Recent genome-wide association studies (GWASs) have revealed several novel single nucleotide polymorphism (SNPs) associated with SUA levels. Of these, rs10821905 of A1CF and rs1178977 of BAZ1B showed the greatest and the second greatest significant effect size for increasing SUA level in the Japanese population, but their association with gout is not clear. We examined their association with gout using 1411 clinically-defined Japanese gout patients and 1285 controls, and meta-analyzed our previous gout GWAS data to investigate any association with gout. Replication studies revealed both SNPs to be significantly associated with gout (P = 0.0366, odds ratio [OR] with 95% confidence interval [CI]: 1.30 [1.02-1.68] for rs10821905 of A1CF, P = 6.49 × 10-3, OR with 95% CI: 1.29 [1.07-1.55] for rs1178977 of BAZ1B). Meta-analysis also revealed a significant association with gout in both SNPs (Pmeta = 3.16 × 10-4, OR with 95% CI: 1.39 [1.17-1.66] for rs10821905 of A1CF, Pmeta = 7.28 × 10-5, OR with 95% CI 1.32 [1.15-1.51] for rs1178977 of BAZ1B). This study shows the first known association between SNPs of A1CF, BAZ1B and clinically-defined gout cases in Japanese. Our results also suggest a shared physiological/pathophysiological background between several populations, including Japanese, for both SUA increase and gout susceptibility. Our findings will not only assist the elucidation of the pathophysiology of gout and hyperuricemia, but also suggest new molecular targets.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetics, Population , Genome-Wide Association Study , Gout/genetics , Polymorphism, Single Nucleotide/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Asian People/genetics , Female , Humans , Male
3.
Ann Rheum Dis ; 79(5): 657-665, 2020 05.
Article in English | MEDLINE | ID: mdl-32238385

ABSTRACT

OBJECTIVES: Genome-wide meta-analyses of clinically defined gout were performed to identify subtype-specific susceptibility loci. Evaluation using selection pressure analysis with these loci was also conducted to investigate genetic risks characteristic of the Japanese population over the last 2000-3000 years. METHODS: Two genome-wide association studies (GWASs) of 3053 clinically defined gout cases and 4554 controls from Japanese males were performed using the Japonica Array and Illumina Array platforms. About 7.2 million single-nucleotide polymorphisms were meta-analysed after imputation. Patients were then divided into four clinical subtypes (the renal underexcretion type, renal overload type, combined type and normal type), and meta-analyses were conducted in the same manner. Selection pressure analyses using singleton density score were also performed on each subtype. RESULTS: In addition to the eight loci we reported previously, two novel loci, PIBF1 and ACSM2B, were identified at a genome-wide significance level (p<5.0×10-8) from a GWAS meta-analysis of all gout patients, and other two novel intergenic loci, CD2-PTGFRN and SLC28A3-NTRK2, from normal type gout patients. Subtype-dependent patterns of Manhattan plots were observed with subtype GWASs of gout patients, indicating that these subtype-specific loci suggest differences in pathophysiology along patients' gout subtypes. Selection pressure analysis revealed significant enrichment of selection pressure on ABCG2 in addition to ALDH2 loci for all subtypes except for normal type gout. CONCLUSIONS: Our findings on subtype GWAS meta-analyses and selection pressure analysis of gout will assist elucidation of the subtype-dependent molecular targets and evolutionary involvement among genotype, phenotype and subtype-specific tailor-made medicine/prevention of gout and hyperuricaemia.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Aldehyde Dehydrogenase, Mitochondrial/genetics , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study , Gout/genetics , Neoplasm Proteins/genetics , Case-Control Studies , Genetic Loci , Genotype , Gout/epidemiology , Humans , Incidence , Japan , Male , Phenotype , Prognosis , Reference Values , Risk Assessment , Severity of Illness Index
5.
Ann Rheum Dis ; 78(10): 1430-1437, 2019 10.
Article in English | MEDLINE | ID: mdl-31289104

ABSTRACT

OBJECTIVE: The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. METHODS: We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). RESULTS: This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10-8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three 'gout vs AHUA GWAS'-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. CONCLUSIONS: This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.


Subject(s)
Contactins/genetics , Gout/genetics , Hyperuricemia/genetics , MicroRNAs/genetics , Zinc Fingers/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Adult , Aldehyde Dehydrogenase, Mitochondrial/genetics , Asymptomatic Diseases , Genetic Loci/genetics , Genome-Wide Association Study , Genotyping Techniques , Glucose Transport Proteins, Facilitative/genetics , Gout/blood , Humans , Male , Middle Aged , Neoplasm Proteins/genetics , Risk Factors , Uric Acid/blood
6.
Ann Rheum Dis ; 76(5): 869-877, 2017 05.
Article in English | MEDLINE | ID: mdl-27899376

ABSTRACT

OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. RESULTS: In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10-8): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10-8). CONCLUSIONS: Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Gout/genetics , Adult , Aged , Asian People/genetics , Case-Control Studies , Cation Transport Proteins/genetics , Cell Cycle Proteins , DNA-Binding Proteins , Genetic Loci , Genotype , Gout/classification , Histones/genetics , Humans , Japan , Male , Middle Aged , Native Hawaiian or Other Pacific Islander/genetics , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Polymorphism, Single Nucleotide , Proteins/genetics , Sodium-Phosphate Cotransporter Proteins, Type I/genetics , White People/genetics
7.
Sci Rep ; 6: 31003, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27571712

ABSTRACT

To clarify the physiological and pathophysiological roles of intestinal urate excretion via ABCG2 in humans, we genotyped ABCG2 dysfunctional common variants, Q126X (rs72552713) and Q141K (rs2231142), in end-stage renal disease (hemodialysis) and acute gastroenteritis patients, respectively. ABCG2 dysfunction markedly increased serum uric acid (SUA) levels in 106 hemodialysis patients (P = 1.1 × 10(-4)), which demonstrated the physiological role of ABCG2 for intestinal urate excretion because their urate excretion almost depends on intestinal excretion via ABCG2. Also, ABCG2 dysfunction significantly elevated SUA in 67 acute gastroenteritis patients (P = 6.3 × 10(-3)) regardless of the degree of dehydration, which demonstrated the pathophysiological role of ABCG2 in acute gastroenteritis. These findings for the first time show ABCG2-mediated intestinal urate excretion in humans, and indicates the physiological and pathophysiological importance of intestinal epithelium as an excretion pathway besides an absorption pathway. Furthermore, increased SUA could be a useful marker not only for dehydration but also epithelial impairment of intestine.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Gastroenteritis/complications , Hyperuricemia/physiopathology , Intestinal Elimination , Neoplasm Proteins/metabolism , Uric Acid/metabolism , Humans , Intestinal Mucosa/enzymology , Intestinal Mucosa/metabolism , Serum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...