Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
2.
Commun Biol ; 7(1): 242, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418613

ABSTRACT

The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through ß-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.


Subject(s)
Lipid Bilayers , Membrane Lipids , Membrane Lipids/metabolism , Lipid Bilayers/metabolism , Cell Membrane/metabolism , Membranes/metabolism , Signal Transduction
3.
J Chem Theory Comput ; 19(9): 2658-2675, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37075065

ABSTRACT

Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 µm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Membrane Proteins/chemistry , Cell Membrane/metabolism , Machine Learning , Lipids
4.
Biophys J ; 121(19): 3630-3650, 2022 10 04.
Article in English | MEDLINE | ID: mdl-35778842

ABSTRACT

During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.


Subject(s)
Cysteine , Proto-Oncogene Proteins c-raf , Binding Sites , Cell Membrane/metabolism , Cysteine/metabolism , Mitogen-Activated Protein Kinases/metabolism , Protein Binding , Proto-Oncogene Proteins c-raf/chemistry , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Solvents/metabolism
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34983849

ABSTRACT

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Subject(s)
Cell Membrane/enzymology , Lipids/chemistry , Machine Learning , Molecular Dynamics Simulation , Protein Multimerization , Proto-Oncogene Proteins p21(ras)/chemistry , Signal Transduction , Humans
6.
Nat Mater ; 20(3): 315-320, 2021 03.
Article in English | MEDLINE | ID: mdl-33020613

ABSTRACT

For millennia, humans have exploited the natural property of metals to get stronger or harden when mechanically deformed. Ultimately rooted in the motion of dislocations, mechanisms of metal hardening have remained in the cross-hairs of physical metallurgists for over a century. Here, we performed atomistic simulations at the limits of supercomputing that are sufficiently large to be statistically representative of macroscopic crystal plasticity yet fully resolved to examine the origins of metal hardening at its most fundamental level of atomic motion. We demonstrate that the notorious staged (inflection) hardening of metals is a direct consequence of crystal rotation under uniaxial straining. At odds with widely divergent and contradictory views in the literature, we observe that basic mechanisms of dislocation behaviour are the same across all stages of metal hardening.

7.
J Chem Phys ; 153(4): 045103, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32752727

ABSTRACT

We have implemented the Martini force field within Lawrence Livermore National Laboratory's molecular dynamics program, ddcMD. The program is extended to a heterogeneous programming model so that it can exploit graphics processing unit (GPU) accelerators. In addition to the Martini force field being ported to the GPU, the entire integration step, including thermostat, barostat, and constraint solver, is ported as well, which speeds up the simulations to 278-fold using one GPU vs one central processing unit (CPU) core. A benchmark study is performed with several test cases, comparing ddcMD and GROMACS Martini simulations. The average performance of ddcMD for a protein-lipid simulation system of 136k particles achieves 1.04 µs/day on one NVIDIA V100 GPU and aggregates 6.19 µs/day on one Summit node with six GPUs. The GPU implementation in ddcMD offloads all computations to the GPU and only requires one CPU core per simulation to manage the inputs and outputs, freeing up remaining CPU resources on the compute node for alternative tasks often required in complex simulation campaigns. The ddcMD code has been made open source and is available on GitHub at https://github.com/LLNL/ddcMD.

8.
J Biomech ; 82: 28-37, 2019 01 03.
Article in English | MEDLINE | ID: mdl-30385003

ABSTRACT

The ankle-brachial index (ABI), a ratio of arterial blood pressure in the ankles and upper arms, is used to diagnose and monitor circulatory conditions such as coarctation of the aorta and peripheral artery disease. Computational simulations of the ABI can potentially determine the parameters that produce an ABI indicative of ischemia or other abnormalities in blood flow. However, 0- and 1-D computational methods are limited in describing a 3-D patient-derived geometry. Thus, we present a massively parallel framework for computational fluid dynamics (CFD) simulations in the full arterial system. Using the lattice Boltzmann method to solve the Navier-Stokes equations, we employ highly parallelized and scalable methods to generate the simulation domain and efficiently distribute the computational load among processors. For the first time, we compute an ABI with 3-D CFD. In this proof-of-concept study, we investigate the dependence of ABI on the presence of stenoses, or narrowed regions of the arteries, by directly modifying the arterial geometry. As a result, our framework enables the computation a hemodynamic factor characterizing flow at the scale of the full arterial system, in a manner that is extensible to patient-specific imaging data and holds potential for treatment planning.


Subject(s)
Ankle Brachial Index , Computer Simulation , Hydrodynamics , Arteries/physiology , Arteries/physiopathology , Constriction, Pathologic/physiopathology , Hemodynamics , Humans
9.
Nature ; 550(7677): 492-495, 2017 10 26.
Article in English | MEDLINE | ID: mdl-28953878

ABSTRACT

Ordinarily, the strength and plasticity properties of a metal are defined by dislocations-line defects in the crystal lattice whose motion results in material slippage along lattice planes. Dislocation dynamics models are usually used as mesoscale proxies for true atomistic dynamics, which are computationally expensive to perform routinely. However, atomistic simulations accurately capture every possible mechanism of material response, resolving every "jiggle and wiggle" of atomic motion, whereas dislocation dynamics models do not. Here we present fully dynamic atomistic simulations of bulk single-crystal plasticity in the body-centred-cubic metal tantalum. Our goal is to quantify the conditions under which the limits of dislocation-mediated plasticity are reached and to understand what happens to the metal beyond any such limit. In our simulations, the metal is compressed at ultrahigh strain rates along its [001] crystal axis under conditions of constant pressure, temperature and strain rate. To address the complexity of crystal plasticity processes on the length scales (85-340 nm) and timescales (1 ns-1µs) that we examine, we use recently developed methods of in situ computational microscopy to recast the enormous amount of transient trajectory data generated in our simulations into a form that can be analysed by a human. Our simulations predict that, on reaching certain limiting conditions of strain, dislocations alone can no longer relieve mechanical loads; instead, another mechanism, known as deformation twinning (the sudden re-orientation of the crystal lattice), takes over as the dominant mode of dynamic response. Below this limit, the metal assumes a strain-path-independent steady state of plastic flow in which the flow stress and the dislocation density remain constant as long as the conditions of straining thereafter remain unchanged. In this distinct state, tantalum flows like a viscous fluid while retaining its crystal lattice and remaining a strong and stiff metal.

10.
Soft Matter ; 11(23): 4606-13, 2015 Jun 21.
Article in English | MEDLINE | ID: mdl-25959363

ABSTRACT

We report a molecular dynamics simulation demonstrating that a columnar liquid crystal, commonly formed by disc-shaped molecules, can be formed by identical particles interacting via a spherically symmetric potential. Upon isochoric cooling from a low-density isotropic liquid state the simulated system underwent a weak first order phase transition which produced a liquid crystal phase composed of parallel particle columns arranged in a hexagonal pattern in the plane perpendicular to the column axis. The particles within columns formed a liquid structure and demonstrated a significant intracolumn diffusion. Further cooling resulted in another first-order transition whereby the column structure became periodically ordered in three dimensions transforming the liquid-crystal phase into a crystal. This result is the first observation of a columnar liquid crystal formation in a simple one-component system of particles. Its conceptual significance is in that it demonstrated that liquid crystals that have so far only been produced in systems of anisometric molecules can also be formed by mesoscopic soft-matter and colloidal systems of spherical particles with appropriately tuned interatomic potential.

11.
Article in English | MEDLINE | ID: mdl-23734785

ABSTRACT

We have developed the capability to rapidly simulate cardiac electrophysiological phenomena in a human heart discretised at a resolution comparable with the length of a cardiac myocyte. Previous scientific investigation has generally invoked simplified geometries or coarse-resolution hearts, with simulation duration limited to 10s of heartbeats. Using state-of-the-art high-performance computing techniques coupled with one of the most powerful computers available (the 20 PFlop/s IBM BlueGene/Q at Lawrence Livermore National Laboratory), high-resolution simulation of the human heart can now be carried out over 1200 times faster compared with published results in the field. We demonstrate the utility of this capability by simulating, for the first time, the formation of transmural re-entrant waves in a 3D human heart. Such wave patterns are thought to underlie Torsades de Pointes, an arrhythmia that indicates a high risk of sudden cardiac death. Our new simulation capability has the potential to impact a multitude of applications in medicine, pharmaceuticals and implantable devices.


Subject(s)
Computer Simulation , Heart/physiology , Models, Cardiovascular , Arrhythmias, Cardiac/etiology , Electrocardiography , Electrophysiological Phenomena , Humans
12.
J Chem Phys ; 133(17): 174502, 2010 Nov 07.
Article in English | MEDLINE | ID: mdl-21054046

ABSTRACT

Under cooling, a liquid can undergo a transition to the glassy state either as a result of a continuous slowing down or by a first-order polyamorphous phase transition. The second scenario has so far always been observed in a metastable liquid domain below the melting point where crystalline nucleation interfered with the glass formation. We report the first observation of the liquid-glass transition by a first-order polyamorphous phase transition from the equilibrium stable liquid phase. The observation was made in a molecular dynamics simulation of a one-component system with a model metallic pair potential. In this way, the model, demonstrating the thermodynamic glass transition from a stable liquid phase, may be regarded as a candidate for a simple monatomic ideal glass former. This observation is of conceptual importance in the context of continuing attempts to resolve the long-standing Kauzmann paradox. The possibility of a thermodynamic glass transition from an equilibrium melt in a metallic system also indicates a new strategy for the development of bulk metallic glass-forming alloys.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 2): 066701, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20365296

ABSTRACT

We present an efficient method for Monte Carlo simulations of diffusion-reaction processes. Introduced by us in a previous paper [Phys. Rev. Lett. 97, 230602 (2006)], our algorithm skips the traditional small diffusion hops and propagates the diffusing particles over long distances through a sequence of superhops, one particle at a time. By partitioning the simulation space into nonoverlapping protecting domains each containing only one or two particles, the algorithm factorizes the N -body problem of collisions among multiple Brownian particles into a set of much simpler single-body and two-body problems. Efficient propagation of particles inside their protective domains is enabled through the use of time-dependent Green's functions (propagators) obtained as solutions for the first-passage statistics of random walks. The resulting Monte Carlo algorithm is event-driven and asynchronous; each Brownian particle propagates inside its own protective domain and on its own time clock. The algorithm reproduces the statistics of the underlying Monte Carlo model exactly. Extensive numerical examples demonstrate that for an important class of diffusion-reaction models the algorithm is efficient at low particle densities, where other existing algorithms slow down severely.


Subject(s)
Biophysics/methods , Algorithms , Diffusion , Kinetics , Models, Statistical , Monte Carlo Method , Normal Distribution , Probability , Reproducibility of Results
14.
J Chem Phys ; 122(7): 074103, 2005 Feb 15.
Article in English | MEDLINE | ID: mdl-15743217

ABSTRACT

We develop a general theoretical framework for the recently proposed importance sampling method for enhancing the efficiency of rare-event simulations [W. Cai, M. H. Kalos, M. de Koning, and V. V. Bulatov, Phys. Rev. E 66, 046703 (2002)], and discuss practical aspects of its application. We define the success/fail ensemble of all possible successful and failed transition paths of any duration and demonstrate that in this formulation the rare-event problem can be interpreted as a "hit-or-miss" Monte Carlo quadrature calculation of a path integral. The fact that the integrand contributes significantly only for a very tiny fraction of all possible paths then naturally leads to a "standard" importance sampling approach to Monte Carlo (MC) quadrature and the existence of an optimal importance function. In addition to showing that the approach is general and expected to be applicable beyond the realm of Markovian path simulations, for which the method was originally proposed, the formulation reveals a conceptual analogy with the variational MC (VMC) method. The search for the optimal importance function in the former is analogous to finding the ground-state wave function in the latter. In two model problems we discuss practical aspects of finding a suitable approximation for the optimal importance function. For this purpose we follow the strategy that is typically adopted in VMC calculations: the selection of a trial functional form for the optimal importance function, followed by the optimization of its adjustable parameters. The latter is accomplished by means of an adaptive optimization procedure based on a combination of steepest-descent and genetic algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...