Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 13(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39061313

ABSTRACT

With the increasing use of invasive, interventional, indwelling, and implanted medical devices, healthcare-associated infections caused by pathogenic biofilms have become a major cause of morbidity and mortality. Herein, we present the fabrication, characterization, and in vitro evaluation of biocompatibility and anti-biofilm properties of new coatings based on Fe3O4 nanoparticles (NPs) loaded with usnic acid (UA) and ceftriaxone (CEF). Sodium lauryl sulfate (SLS) was employed as a stabilizer and modulator of the polarity, dispersibility, shape, and anti-biofilm properties of the magnetite nanoparticles. The resulting Fe3O4 functionalized NPs, namely Fe3O4@SLS, Fe3O4@SLS/UA, and Fe3O4@SLS/CEF, respectively, were prepared by co-precipitation method and fully characterized by XRD, TEM, SAED, SEM, FTIR, and TGA. They were further used to produce nanostructured coatings by matrix-assisted pulsed laser evaporation (MAPLE) technique. The biocompatibility of the coatings was assessed by measuring the cell viability, lactate dehydrogenase release, and nitric oxide level in the culture medium and by evaluating the actin cytoskeleton morphology of murine pre-osteoblasts. All prepared nanostructured coatings exhibited good biocompatibility. Biofilm growth inhibition ability was tested at 24 h and 48 h against Staphylococcus aureus and Pseudomonas aeruginosa as representative models for Gram-positive and Gram-negative bacteria. The coatings demonstrated good biocompatibility, promoting osteoblast adhesion, migration, and growth without significant impact on cell viability or morphology, highlighting their potential for developing safe and effective antibacterial surfaces.

2.
Nanomaterials (Basel) ; 14(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39057873

ABSTRACT

This review covers recent compositions of bioactive glass, with a specific emphasis on both inorganic and organic materials commonly utilized as matrices for injectable materials. The major objective is to highlight the predominant bioactive glass formulations and their clinical applications in the biomedical field. Previous studies have highlighted the growing interest among researchers in bioactive glasses, acknowledging their potential to yield promising outcomes in this field. As a result of this increased interest, investigations into bioactive glass have prompted the creation of composite materials and, notably, the development of injectable composites as a minimally invasive method for administering the material within the human body. Injectable materials have emerged as a promising avenue to mitigate various challenges. They offer several advantages, including minimizing invasive surgical procedures, reducing patient discomfort, lowering the risk of postoperative infection and decreasing treatment expenses. Additionally, injectable materials facilitate uniform distribution, allowing for the filling of defects of any shape.

3.
Int J Pharm ; 661: 124420, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971512

ABSTRACT

Colorectal cancer represents a worldwide spread type of cancer and it is regarded as one of the leading death causes, along with lung, breast, and prostate cancers. Since conventional surgical resection and chemotherapy proved limited efficiency, the use of alternative drug delivery systems that ensure the controlled release of cytostatic agents possess immense potential for treatment. In this regard, the present study aimed to develop and evaluate the efficiency of a series of irinotecan-loaded magnetite-silica core-shell systems. The magnetite particles were obtained through a solvothermal treatment, while the silica shell was obtained through the Stöber method directly onto the surface of magnetite particles. Subsequently, the core-shell systems were physico-chemically and morpho-structurally evaluated trough X-ray diffraction (XRD) and (high-resolution) transmission electron microscopy ((HR-)TEM) equipped with a High Annular Angular Dark Field Detector (HAADF) for elemental mapping. After the irinotecan loading, the drug delivery systems were evaluated through Fourier-transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), and UV-Vis spectrophotometry. Additionally, the Brunauer-Emmett-Teller (BET) method was employed for determining the surface area and pore volume of the systems. The biological functionality of the core-shells was investigated through the MTT assay performed on both normal and cancer cells. The results of the study confirmed the formation of highly crystalline magnetite particles comprising the core and mesoporous silica layers of sizes varying between 2 and 7 nm as the shell. Additionally, the drug loading and release was dependent on the type of the silica synthesis procedure, since the lack of hexadecyltrimethylammonium bromide (CTAB) resulted in higher drug loading but lower cumulative release. Moreover, the nanostructured systems demonstrated a targeted efficiency towards HT-29 colorectal adenocarcinoma cells, as in the case of normal L929 fibroblast cells, the cell viability was higher than for the pristine drug. In this manner, this study provides the means and procedures for developing drug delivery systems with applicability in the treatment of cancer.

4.
Int J Mol Sci ; 25(11)2024 May 31.
Article in English | MEDLINE | ID: mdl-38892267

ABSTRACT

Food safety and quality are major concerns in the food industry. Despite numerous studies, polyethylene remains one of the most used materials for packaging due to industry reluctance to invest in new technologies and equipment. Therefore, modifications to the current materials are easier to implement than adopting whole new solutions. Antibacterial activity can be induced in low-density polyethylene films only by adding antimicrobial agents. ZnO nanoparticles are well known for their strong antimicrobial activity, coupled with low toxicity and UV shielding capability. These characteristics recommend ZnO for the food industry. By incorporating such safe and dependable antimicrobial agents in the polyethylene matrix, we have obtained composite films able to inhibit microorganisms' growth that can be used as packaging materials. Here we report the obtaining of highly homogenous composite films with up to 5% ZnO by a melt mixing process at 150 °C for 10 min. The composite films present good transparency in the visible domain, permitting consumers to visualize the food, but have good UV barrier properties. The composite films exhibit good antimicrobial and antibiofilm activity from the lowest ZnO composition (1%), against both Gram-positive and Gram-negative bacterial strains. The homogenous dispersion of ZnO nanoparticles into the polyethylene matrix was assessed by Fourier transform infrared microscopy and scanning electron microscopy. The optimal mechanical barrier properties were obtained for composition with 3% ZnO. The thermal analysis indicates that the addition of ZnO nanoparticles has increased thermal stability by more than 100 °C. The UV-Vis spectra indicate a low transmittance in the UV domain, lower than 5%, making the films suitable for blocking photo-oxidation processes. The obtained films proved to be efficient packaging films, successfully preserving plum (Rome) tomatoes for up to 14 days.


Subject(s)
Food Packaging , Polyethylene , Solanum lycopersicum , Zinc Oxide , Zinc Oxide/chemistry , Zinc Oxide/pharmacology , Food Packaging/methods , Polyethylene/chemistry , Solanum lycopersicum/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Biofilms/drug effects
5.
Pharmaceutics ; 16(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38675186

ABSTRACT

Melissa officinalis is an important medicinal plant that is used and studied intensively due to its numerous pharmacological effects. This plant has numerous active compounds with biomedical potential; some are volatile, while others are sensitive to heat or oxygen. Therefore, to increase stability and prolong biological activities, the natural extract can be loaded into various nanostructured systems. In this study, different loading systems were obtained from mesoporous silica, like Mobile Composition of Matter family (MCM) with a hexagonal (MCM-41) or cubic (MCM-48) pore structure, simple or functionalized with amino groups (using 3-aminopropyl) such as triethoxysilane (APTES). Thus, the four materials were characterized from morphological and structural points of view by scanning electron microscopy, a BET analysis with adsorption-desorption isotherms, Fourier-transform infrared spectroscopy (FTIR) and a thermogravimetric analysis coupled with differential scanning calorimetry. Natural extract from Melissa officinalis was concentrated and analyzed by High-Performance Liquid Chromatography to identify the polyphenolic compounds. The obtained materials were tested against Gram-negative bacteria and yeasts and against both reference strains and clinical strains belonging to Gram-positive bacteria that were previously isolated from intra-hospital infections. The highest antimicrobial efficiency was found against Gram-positive and fungal strains. Good activity was also recorded against methicillin-resistant S. aureus, the Melissa officinalis extract inhibiting the production of various virulence factors.

6.
Molecules ; 29(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38675662

ABSTRACT

Membrane materials with osmium nanoparticles have been recently reported for bulk membranes and supported composite membrane systems. In the present paper, a catalytic material based on osmium dispersed in n-decanol (nD) or n-dodecanol (nDD) is presented, which also works as an emulsion membrane. The hydrogenation of p-nitrophenol (PNP) is carried out in a reaction and separation column in which an emulsion in the acid-receiving phase is dispersed in an osmium nanodispersion in n-alcohols. The variables of the PNP conversion process and p-aminophenol (PAP) transport are as follows: the nature of the membrane alcohol, the flow regime, the pH difference between the source and receiving phases and the number of operating cycles. The conversion results are in all cases better for nD than nDD. The counter-current flow regime is superior to the co-current flow. Increasing the pH difference between the source and receiving phases amplifies the process. The number of operating cycles is limited to five, after which the regeneration of the membrane dispersion is required. The apparent catalytic rate constant (kapp) of the new catalytic material based on the emulsion membrane with the nanodispersion of osmium nanoparticles (0.1 × 10-3 s-1 for n-dodecanol and 0.9 × 10-3 s-1 for n-decanol) is lower by an order of magnitude compared to those based on adsorption on catalysts from the platinum metal group. The advantage of the tested membrane catalytic material is that it extracts p-aminophenol in the acid-receiving phase.

7.
J Funct Biomater ; 14(12)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38132814

ABSTRACT

The current study reports the use of silver (Ag) and samarium (Sm) as dopants to improve the properties of standard bioglass in terms of biological performance. This experiment considers thin films of doped bioglass obtained by pulsed laser deposition (PLD) and spin coating (SC). For both methods, some parameters were gradually varied, as the main objective was to produce a bioglass that could be used in biomedical fields. In order to study the morphology, the phase composition and other properties, the samples obtained were subjected to multiple analyses, such as thermal analysis, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier-transform infrared (FT-IR), Raman spectroscopy, and x-ray diffraction (XRD). Furthermore, the in vitro bioactivity of the samples, as assessed through simulated body fluid (SBF) immersion, as well as immunocytochemistry and evaluation of actin filaments, assessed through fluorescence microscopy, are reported. The results confirmed the formation of the designed vitreous target employed as the source of material in the PLD experiments only at sintering temperatures below 800 °C; this vitreous nature was preserved in the grown film as well. The presence of Ag and Ce dopants in the parent glassy matrix was validated for all stages, from powder, to target, to PLD/SC-derived coatings. Additionally, it was demonstrated that the surface topography of the layers can be adjusted by using substrates with different roughness or by modulating the processing parameters, such as substrate temperature and working pressure in PLD, rotation speed, and number of layers in SC. The developed material was found to be highly bioactive after 28 days of immersion in SBF, but it was also found to be a potential candidate for inhibiting the growth of Gram-negative bacteria and a suitable support for cell growth and proliferation.

8.
Nanomaterials (Basel) ; 13(22)2023 Nov 19.
Article in English | MEDLINE | ID: mdl-37999328

ABSTRACT

A novel high-entropy perovskite powder with the composition Bi0.2K0.2Ba0.2Sr0.2Ca0.2TiO3 was successfully synthesized using a modified Pechini method. The precursor powder underwent characterization through Fourier Transform Infrared Spectroscopy and thermal analysis. The resultant Bi0.2K0.2Ba0.2Sr0.2Ca0.2TiO3 powder, obtained post-calcination at 900 °C, was further examined using a variety of techniques including X-ray diffraction, Raman spectroscopy, X-ray fluorescence, scanning electron microscopy, and transmission electron microscopy. Ceramic samples were fabricated by conventional sintering at various temperatures (900, 950, and 1000 °C). The structure, microstructure, and dielectric properties of these ceramics were subsequently analyzed and discussed. The ceramics exhibited a two-phase composition comprising cubic and tetragonal perovskites. The grain size was observed to increase from 35 to 50 nm, contingent on the sintering temperature. All ceramic samples demonstrated relaxor behavior with a dielectric maximum that became more flattened and shifted towards lower temperatures as the grain size decreased.

9.
Int J Mol Sci ; 24(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38003499

ABSTRACT

Uncontrollable bleeding continues to stand as the primary cause of fatalities globally following surgical procedures, traumatic incidents, disasters, and combat scenarios. The swift and efficient management of bleeding through the application of hemostatic agents has the potential to significantly reduce associated mortality rates. One significant drawback of currently available hemostatic products is their susceptibility to bacterial infections at the bleeding site. As this is a prevalent issue that can potentially delay or compromise the healing process, there is an urgent demand for hemostatic agents with antibacterial properties to enhance survival rates. To mitigate the risk of infection at the site of a lesion, we propose an alternative solution in the form of a chitosan-based sponge and antimicrobial agents such as silver nanoparticles (AgNPs) and lavender essential oil (LEO). The aim of this work is to provide a new type of hemostatic sponge with an antibacterial barrier against a wide range of Gram-positive and Gram-negative microorganisms: Staphylococcus epidermidis 2018 and Enterococcus faecalis VRE 2566 (Gram-positive strains) and Klebsiella pneumoniae ATCC 10031 and Escherichia coli ATCC 35218 (Gram-negative strains).


Subject(s)
Chitosan , Hemostatics , Metal Nanoparticles , Chitosan/pharmacology , Hemostatics/pharmacology , Silver , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
10.
Nanomaterials (Basel) ; 13(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37887945

ABSTRACT

Magnetite nanoparticles (Fe3O4 NPs) are among the most investigated nanomaterials, being recognized for their biocompatibility, versatility, and strong magnetic properties. Given that their applicability depends on their dimensions, crystal morphology, and surface chemistry, Fe3O4 NPs must be synthesized in a controlled, simple, and reproducible manner. Since conventional methods often lack tight control over reaction parameters and produce materials with unreliable characteristics, increased scientific interest has been directed to microfluidic techniques. In this context, the present paper describes the development of an innovative 3D microfluidic platform suitable for synthesizing uniform Fe3O4 NPs with fine-tuned properties. On-chip co-precipitation was performed, followed by microwave-assisted silanization. The obtained nanoparticles were characterized from the compositional and microstructural perspectives by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, supplementary physicochemical investigations, such as Fourier Transform Infrared Spectroscopy (FT-IR), Kaiser Test, Ultraviolet-Visible (UV-Vis) Spectrophotometry, Dynamic Light Scattering (DLS), and Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) analyses, demonstrated the successful surface modification. Considering the positive results, the presented synthesis and functionalization method represents a fast, reliable, and effective alternative for producing tailored magnetic nanoparticles.

11.
Pharmaceutics ; 15(10)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37896230

ABSTRACT

One major problem with the overuse of antibiotics is that the microorganisms acquire resistance; thus the dose must be increased unsustainably. To overcome this problem, researchers from around the world are actively investigating new types of antimicrobials. Zinc oxide (ZnO) nanoparticles (NPs) have been proven to exhibit strong antimicrobial effects; moreover, the Food and Drugs Administration (FDA) considers ZnO as GRAS (generally recognized as safe). Many essential oils have antimicrobial activity and their components do not generate resistance over time. One of the drawbacks is the high volatility of some components, which diminishes the antimicrobial action as they are eliminated. The combination of ZnO NPs and essential oils can synergistically produce a stronger antimicrobial effect, and some of the volatile compounds can be retained on the nanoparticles' surface, ensuring a better-lasting antimicrobial effect. The samples were characterized with X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), and thermal analysis (TG-DSC) coupled with analysis of evolved gases using FTIR. The ZnO NPs, with a size of ~35 nm, exhibited a loading between 1.44% and 15.62%-the lower values were specific for limonene-containing oils (e.g., orange, grapefruit, bergamot, or limette), while high values were obtained from cinnamon, minzol, thyme, citronella, and lavender oils-highlighting differences among non-polar terpenes and alcohol or aldehyde derivatives. The antibacterial assay indicated the existence of a synergic action among components and a high dependency on the percentage of loaded oil. Loaded nanoparticles offer immense potential for the development of materials with specific applications, such as wound dressings or food packaging. These nanoparticles can be utilized in scenarios where burst delivery is desired or when prolonged antibacterial activity is sought.

12.
Polymers (Basel) ; 15(17)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37688255

ABSTRACT

The aim of the present study was to obtain antimicrobial dressings from bacterial cellulose loaded with nutmeg and of fir needle essential oils. The attractive properties of BC, such as biocompatibility, good physicochemical and mechanical stability, and high water absorption, led to the choice of this material to be used as a support. Essential oils have been added to provide antimicrobial properties to these dressings. The results confirmed the presence of oils in the structure of the bacterial cellulose membrane and the ability of the materials to inhibit the adhesion of Staphylococcus aureus and Escherichia coli. By performing antibacterial tests on membranes loaded with fir needle essential oil, we demonstrated the ability of these membranes to inhibit bacterial adhesion to the substrate. The samples loaded with nutmeg essential oil exhibited the ability to inhibit the adhesion of bacteria to the surface of the materials, with the 5% sample showing a significant decrease. The binding of essential oils to the membrane was confirmed by thermal analysis and infrared characterization.

13.
Int J Mol Sci ; 24(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37762504

ABSTRACT

The current study reports on the fabrication of composite scaffolds based on polycaprolactone (PCL) and cerium (Ce)-containing powders, followed by their characterization from compositional, structural, morphological, optical and biological points of view. First, CeO2, Ce-doped calcium phosphates and Ce-substituted bioglass were synthesized by wet-chemistry methods (precipitation/coprecipitation and sol-gel) and subsequently loaded on PCL fibres processed by electrospinning. The powders were proven to be nanometric or micrometric, while the investigation of their phase composition showed that Ce was present as a dopant within the crystal lattice of the obtained calcium phosphates or as crystalline domains inside the glassy matrix. The best bioactivity was attained in the case of Ce-containing bioglass, while the most pronounced antibacterial effect was visible for Ce-doped calcium phosphates calcined at a lower temperature. The scaffolds were composed of either dimensionally homogeneous fibres or mixtures of fibres with a wide size distribution and beads of different shapes. In most cases, the increase in polymer concentration in the precursor solution ensured the achievement of more ordered fibre mats. The immersion in SBF for 28 days triggered an incipient degradation of PCL, evidenced mostly through cracks and gaps. In terms of biological properties, the composite scaffolds displayed a very good biocompatibility when tested with human osteoblast cells, with a superior response for the samples consisting of the polymer and Ce-doped calcium phosphates.


Subject(s)
Cerium , Polyesters , Humans , Polymers , Anti-Bacterial Agents , Powders
14.
Pharmaceutics ; 15(9)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37765184

ABSTRACT

Magnetite nanoparticles (MNPs) have been intensively studied for biomedical applications, especially as drug delivery systems for the treatment of infections. Additionally, they are characterized by intrinsic antimicrobial properties owing to their capacity to disrupt or penetrate the microbial cell wall and induce cell death. However, the current focus has shifted towards increasing the control of the synthesis reaction to ensure more uniform nanoparticle sizes and shapes. In this context, microfluidics has emerged as a potential candidate method for the controlled synthesis of nanoparticles. Thus, the aim of the present study was to obtain a series of antibiotic-loaded MNPs through a microfluidic device. The structural properties of the nanoparticles were investigated through X-ray diffraction (XRD) and, selected area electron diffraction (SAED), the morphology was evaluated through transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), the antibiotic loading was assessed through Fourier-transform infrared spectroscopy (FT-IR) and, and thermogravimetry and differential scanning calorimetry (TG-DSC) analyses, and. the release profiles of both antibiotics was determined through UV-Vis spectroscopy. The biocompatibility of the nanoparticles was assessed through the MTT assay on a BJ cell line, while the antimicrobial properties were investigated against the S. aureus, P. aeruginosa, and C. albicans strains. Results proved considerable uniformity of the antibiotic-containing nanoparticles, good biocompatibility, and promising antimicrobial activity. Therefore, this study represents a step forward towards the microfluidic development of highly effective nanostructured systems for antimicrobial therapies.

15.
Materials (Basel) ; 16(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569981

ABSTRACT

Polymeric biocomposites based on TPU/recycled TPUW/mixed leather and SBR rubber waste unmodified/modified with polydimethylsiloxane/PE-g-MA in different percentages were made via the mixing technique on a Plasti-Corder Brabender mixer with an internal capacity of 350 cm3. The waste, which came from the shoe industry, was cryogenically ground with the help of a cryogenic cyclone mill at micrometric sizes and different speeds. For the tests, standard plates of 150 × 150 × 2 mm were obtained in a laboratory-scale hydraulic press via the method of compression between its plates, with well-established parameters. The biocomposites were tested physico-mechanically and rheologically (MFI) according to the standards in force on polymer-specific equipment, also via FT-IR spectroscopy and microscopy, as well as via differential scanning calorimetry-DSC. Following the tests carried out, according to the standard for use in the footwear industry, at least two samples present optimal values (of interest) suitable for use in the footwear industry by injection or pressing in forming moulds.

16.
Pharmaceutics ; 15(7)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37514068

ABSTRACT

We report on a comparative in vitro study of selective cytotoxicity against MCF7 tumor cells and normal VERO cells tested on silver-based nanocoatings synthesized by the matrix-assisted pulsed laser evaporation (MAPLE) technique. Silver nanoparticles (AgNPs) were loaded with five representative cytostatic drugs (i.e., doxorubicin, fludarabine, paclitaxel, gemcitabine, and carboplatin) and with five essential oils (EOs) (i.e., oregano, rosemary, ginger, basil, and thyme). The as-obtained coatings were characterized by X-ray diffraction, thermogravimetry coupled with differential scanning calorimetry, Fourier-transform IR spectroscopy, IR mapping, and scanning electron microscopy. A screening of the impact of the prepared nanocoatings on the MCF7 tumor and normal VERO cell lines was achieved by means of cell viability MTT and cytotoxicity LDH assays. While all nanocoatings loaded with antitumor drugs exhibited powerful cytotoxic activity against both the tumor and the normal cells, those embedded with AgNPs loaded with rosemary and thyme EOs showed remarkable and statistically significant selective cytotoxicity against the tested cancercells. The EO-loaded nanocoatings were tested for antimicrobial and antibiofilm activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. For all studied pathogens, the cell viability, assessed by counting the colony-forming units after 2 and 24 h, was significantly decreased by all EO-based nanocoatings, while the best antibiofilm activity was evidenced by the nanocoatings containing ginger and thyme EOs.

17.
Molecules ; 28(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446861

ABSTRACT

Since cancer is a continuously increasing concern for the general population, more efficient treatment alternatives ought to be developed. In this regard, a promising direction is represented by the use of magnetite nanoparticles (MNPs) to act both as a nanocarrier for the targeted release of antitumoral drugs and as hyperthermia agents. Thus, the present study focused on improving the control upon the outcome properties of MNPs by using two synthesis methods, namely the co-precipitation and microwave-assisted hydrothermal method, for the incorporation of usnic acid (UA), a natural lichen-derived metabolite with proven anticancer activity. The obtained UA-loaded MNPs were thoroughly characterized regarding their morpho-structural and physicochemical properties through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and zeta potential, scanning electron microscopy (SEM), and vibrating sample magnetometry (VSM). Results demonstrated the formation of magnetite as the unique mineralogical phase through both types of synthesis, with increased uniformity regarding the drug loading efficiency, size, stability, and magnetic properties obtained through the microwave-assisted hydrothermal method. Furthermore, the cytotoxicity of the nanostructures against the HEK 293T cell line was investigated through the XTT assay, which further proved their potential for anticancer treatment applications.


Subject(s)
Magnetite Nanoparticles , Neoplasms , Humans , Magnetite Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , X-Ray Diffraction
18.
Int J Mol Sci ; 24(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37511219

ABSTRACT

The recognized antimicrobial activity of silver nanoparticles is a well-studied property, especially when designing and developing biomaterials with medical applications. As biological activity is closely related to the physicochemical characteristics of a material, aspects such as particle morphology and dimension should be considered. Microfluidic systems in continuous flow represent a promising method to control the size, shape, and size distribution of synthesized nanoparticles. Moreover, using microfluidics widens the synthesis options by creating and controlling parameters that are otherwise difficult to maintain in conventional batch procedures. This study used a microfluidic platform with a cross-shape design as an innovative method for synthesizing silver nanoparticles and varied the precursor concentration and the purging speed as experimental parameters. The compositional and microstructural characterization of the obtained samples was carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). Four formulations of alginate-based hydrogels with the addition of hyaluronic acid and silver nanoparticles were obtained to highlight the antimicrobial activity of silver nanoparticles and the efficiency of such a composite in wound treatment. The porous structure, swelling capacity, and biological properties were evaluated through physicochemical analysis (FT-IR and SEM) and through contact with prokaryotic and eukaryotic cells. The results of the physicochemical and biological investigations revealed desirable characteristics for performant wound dressings (i.e., biocompatibility, appropriate porous structure, swelling rate, and degradation rate, ability to inhibit biofilm formation, and cell growth stimulation capacity), and the obtained materials are thus recommended for treating chronic and infected wounds.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Hyaluronic Acid/chemistry , Silver/pharmacology , Silver/chemistry , Microfluidics , Spectroscopy, Fourier Transform Infrared , Alginates/chemistry , Metal Nanoparticles/chemistry , Anti-Infective Agents/pharmacology , Bandages , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
19.
Pharmaceutics ; 15(6)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37376176

ABSTRACT

The production of highly porous and three-dimensional (3D) scaffolds with biomimicking abilities has gained extensive attention in recent years for tissue engineering (TE) applications. Considering the attractive and versatile biomedical functionality of silica (SiO2) nanomaterials, we propose herein the development and validation of SiO2-based 3D scaffolds for TE. This is the first report on the development of fibrous silica architectures, using tetraethyl orthosilicate (TEOS) and polyvinyl alcohol (PVA) during the self-assembly electrospinning (ES) processing (a layer of flat fibers must first be created in self-assembly electrospinning before fiber stacks can develop on the fiber mat). The compositional and microstructural characteristics of obtained fibrous materials were evaluated by complementary techniques, in both the pre-ES aging period and post-ES calcination. Then, in vivo evaluation confirmed their possible use as bioactive scaffolds in bone TE.

20.
Membranes (Basel) ; 13(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37367795

ABSTRACT

Since the water pollution problem still affects the environmental system and human health, the need to develop innovative membranes has become imperious. Lately, researchers have focused on developing novel materials to help diminish the contamination problem. The aim of present research was to obtain innovative adsorbent composite membranes based on a biodegradable polymer, alginate, to remove toxic pollutants. Of all pollutants, lead was chosen due to its high toxicity. The composite membranes were successfully obtained through a direct casting method. The silver nanoparticles (Ag NPs) and caffeic acid (CA) from the composite membranes were kept at low concentrations, which proved enough to bestow antimicrobial activity to the alginate membrane. The obtained composite membranes were characterised by Fourier transform infrared spectroscopy and microscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TG-DSC). Swelling behaviour, lead ion (Pb2+) removal capacity, regeneration and reusability were also determined. Further, the antimicrobial activity was tested against selected pathogenic strains (S. aureus, E. faecalis sp., P. aeruginosa, E. coli and C. albicans). The presence of Ag NPs and CA improves the antimicrobial activity of the newly developed membranes. Overall, the composite membranes are suitable for complex water treatment (removal of heavy metal ions and antimicrobial treatment).

SELECTION OF CITATIONS
SEARCH DETAIL