Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Immunol Immunopathol ; 272: 110768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703559

ABSTRACT

The Mycoplasma hyorhinis (Mhr) variable lipoprotein (Vlp) family, comprising Vlps A, B, C, D, E, F, and G, are highly variable in expression, size, and cytoadhesion capabilities across Mhr strains. The 'Vlp system' plays a crucial role in cytoadhesion, immune evasion, and in eliciting a host immunologic response. This pilot study described the development of Vlp peptide-based ELISAs to evaluate the antigenic reactivity of individual Vlps against Mhr antisera collected throughout a longitudinal study focused on Mhr strain 38983, reproducing Mhr-associated disease under experimental conditions. Specifically, serum samples were collected at day post-inoculation 0, 7, 10, 14, 17, 21, 24, 28, 35, 42, 49, and 56 from Mhr- and mock (Friis medium)-inoculated cesarean-derived, colostrum-deprived pigs. Significant Mhr-specific IgG responses were detected at specific time points throughout the infection, with some variations for each Vlp. Overall, individual Vlp ELISAs showed consistently high accuracy rates, except for VlpD, which would likely be associated with its expression levels or the anti-Vlp humoral immune response specific to the Mhr strain used in this study. This study provides the basis and tools for a more refined understanding of these Vlp- and Mhr strain-specific variations, which is foundational in understanding the host immune response to Mhr.


Subject(s)
Lipoproteins , Mycoplasma Infections , Mycoplasma hyorhinis , Animals , Lipoproteins/immunology , Mycoplasma hyorhinis/immunology , Mycoplasma Infections/immunology , Mycoplasma Infections/veterinary , Swine/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Pilot Projects , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antigens, Bacterial/immunology , Swine Diseases/immunology , Swine Diseases/microbiology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Female , Bacterial Proteins/immunology , Longitudinal Studies
2.
Vet Microbiol ; 290: 109999, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38280306

ABSTRACT

Mycoplasma hyorhinis (Mhr) and M. hyosynoviae (Mhs) are commensal organisms of the upper respiratory tract and tonsils but may also cause arthritis in pigs. In this study, 8-week-old cesarean-derived colostrum-deprived (CDCD) pigs (n = 30; 3 groups, 10 pigs per group, 2 pigs per pen) were inoculated with Mhr, Mhs, or mock-inoculated with culture medium and then pen-based oral fluids were collected at different time points over the 56 days of the experimental study. Oral fluids tested by Mhr and Mhs quantitative real-time PCRs revealed Mhr DNA between day post inoculation (DPI) 5-52 and Mhs DNA between DPI 5-15. Oral fluids were likewise tested for antibody using isotype-specific (IgG, IgA, IgM) indirect ELISAs based on a recombinant chimeric polypeptide of variable lipoproteins (A-G) for Mhr and Tween 20-extracted surface proteins for Mhs. Mhr IgA was detected at DPI 7 and, relative to the control group, significant (p < 0.05) antibody responses were detected in the Mhr group between DPI 12-15 for IgM and DPI 36-56 for both IgA and IgG. In the Mhs group, IgM was detected at DPI 10 and significant (p < 0.05) IgG and IgA responses were detected at DPI 32-56 and DPI 44-56, respectively. This study demonstrated that oral fluid could serve as an effective and convenient antemortem sample for monitoring Mhr and Mhs in swine populations.


Subject(s)
Mycoplasma Infections , Mycoplasma hyorhinis , Swine Diseases , Swine , Animals , Mycoplasma hyorhinis/genetics , Swine Diseases/microbiology , Mycoplasma Infections/veterinary , Mycoplasma Infections/microbiology , Antibody Formation , Bacterial Shedding , Immunoglobulin M , Immunoglobulin A , DNA , Immunoglobulin G
3.
Int J Microbiol ; 2023: 3247448, 2023.
Article in English | MEDLINE | ID: mdl-37790200

ABSTRACT

Oil spills are major anthropogenic disasters that cause serious harm to marine environments. In the Philippines, traditional methods of rehabilitating oil-polluted areas were proven to be less efficient and cause further damage to the environment. Microbial degradation has poised itself to be a promising alternative to those traditional methods in remediating oil spills. Hence, the present study aimed to enrich and characterize hydrocarbon-degrading microbial consortia from oil-contaminated regions in Guimaras Island for potential use in bioremediation. A total of 75 soil samples were obtained and used as inoculum for the enrichment for hydrocarbon degraders. Afterwards, 32 consortia were recovered and subjected to the 2,6-DCPIP assay for biodegradation ability on four types of hydrocarbons: diesel, xylene, hexane, and hexadecane. The consortia that obtained the highest percent degradation for each of the four hydrocarbons were "B2" (92.34% diesel degraded), "A5" (85.55% hexadecane degraded), "B1" (74.33% hexane degraded), and "B7" (63.38% xylene degraded). Illumina MiSeq 16S rRNA gene amplicon sequencing revealed that the dominant phyla in all consortia are Pseudomonadota (previously Proteobacteria), followed by Bacillota (previously Firmicutes). Overall, the amplicon sequence variants (ASVs) retrieved were mainly from the Gammaproteobacteria class, in which many hydrocarbon-degrading bacteria are found. Predictive functional profiling of the consortium showed the presence of genes involved in the degradation of recalcitrant hydrocarbon pollutants. Fatty acid metabolism, which includes alkB (alkane-1-monooxygenase) and genes for beta oxidation, was inferred to be the most abundant amongst all hydrocarbon degradation pathways. Klebsiella sp. is the predominant ASV in all the sequenced consortia as well as the major contributor of hydrocarbon degradation genes. The findings of the study can serve as groundwork for the development of hydrocarbon-degrading bacterial consortia for the bioremediation of oil spill-affected areas in the Philippines. Likewise, this paper provides a basis for further investigation into the role of Klebsiella sp. in the bioremediation of hydrocarbon pollutants.

4.
J Bacteriol ; 191(22): 6928-35, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19767431

ABSTRACT

Methanosarcina species possess three operons (mtaCB1, mtaCB2, and mtaCB3) encoding methanol-specific methyltransferase 1 (MT1) isozymes and two genes (mtaA1 and mtaA2) with the potential to encode a methanol-specific methyltransferase 2 (MT2). Previous genetic studies showed that these genes are differentially regulated and encode enzymes with distinct levels of methyltransferase activity. Here, the effects of promoter strength on growth and on the rate of methane production were examined by constructing strains in which the mtaCB promoters were exchanged. When expressed from the strong PmtaC1 or PmtaC2 promoter, each of the MtaC and MtaB proteins supported growth and methane production at wild-type levels. In contrast, all mtaCB operons exhibited poorer growth and lower rates of methane production when PmtaC3 controlled their expression. Thus, previously observed phenotypic differences can be attributed largely to differences in promoter activity. Strains carrying various combinations of mtaC, mtaB, and mtaA expressed from the strong, tetracycline-regulated PmcrB(tetO1) promoter exhibited similar growth characteristics on methanol, showing that all combinations of MtaC, MtaB, and MtaA can form functional MT1/MT2 complexes. However, an in vitro assay of coupled MT1/MT2 activity showed significant variation between the strains. Surprisingly, these variations in activity correlated with differences in protein abundance, despite the fact that all the encoding genes were expressed from the same promoter. Quantitative reverse transcriptase PCR and reporter gene fusion data suggest that the mtaCBA transcripts show different stabilities, which are strongly influenced by the growth substrate.


Subject(s)
Isoenzymes/physiology , Methanosarcina/metabolism , Methyltransferases/physiology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/physiology , Blotting, Western , Gene Expression Regulation, Archaeal/genetics , Gene Expression Regulation, Archaeal/physiology , Isoenzymes/genetics , Isoenzymes/metabolism , Methanosarcina/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Operon/genetics , Promoter Regions, Genetic/genetics , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...