Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(2): e0010752, 2023 02.
Article in English | MEDLINE | ID: mdl-36763676

ABSTRACT

The planorbid gastropod genus Bulinus consists of 38 species that vary in their ability to vector Schistosoma haematobium (the causative agent of human urogenital schistosomiasis), other Schistosoma species, and non-schistosome trematodes. Relying on sequence-based identifications of bulinids (partial cox1 and 16S) and Schistosoma (cox1 and ITS), we examined Bulinus species in the Lake Victoria Basin in Kenya for naturally acquired infections with Schistosoma species. We collected 6,133 bulinids from 11 sites between 2014-2021, 226 (3.7%) of which harbored Schistosoma infections. We found 4 Bulinus taxa from Lake Victoria (B. truncatus, B. tropicus, B. ugandae, and B. cf. transversalis), and an additional 4 from other habitats (B. globosus, B. productus, B. forskalii, and B. scalaris). S. haematobium infections were found in B. globosus and B. productus (with infections in the former predominating) whereas S. bovis infections were identified in B. globosus, B. productus, B. forskalii, and B. ugandae. No nuclear/mitochondrial discordance potentially indicative of S. haematobium/S. bovis hybridization was detected. We highlight the presence of Bulinus ugandae as a distinct lake-dwelling taxon closely related to B. globosus yet, unlike all other members of the B. africanus species group, is likely not a vector for S. haematobium, though it does exhibit susceptibility to S. bovis. Other lake-dwelling bulinids also lacked S. haematobium infections, supporting the possibility that they all lack compatibility with local S. haematobium, thereby preventing widespread transmission of urogenital schistosomiasis in the lake's waters. We support B. productus as a distinct species from B. nasutus, B. scalaris as distinct from B. forskalii, and add further evidence for a B. globosus species complex with three lineages represented in Kenya alone. This study serves as an essential prelude for investigating why these patterns in compatibility exist and whether the underlying biological mechanisms may be exploited for the purpose of limiting schistosome transmission.


Subject(s)
Bulinus , Schistosomiasis haematobia , Animals , Humans , Bulinus/genetics , Schistosomiasis haematobia/epidemiology , Lakes , Kenya/epidemiology , Schistosoma haematobium/genetics , Snails
2.
Ecosphere ; 13(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-36285193

ABSTRACT

Schistosome parasites cause a chronic inflammatory disease in humans, and recent studies have emphasized the importance of control programs for understanding the aquatic phases of schistosomiasis transmission. The host-seeking behavior of larval schistosomes (miracidia) for their snail intermediate hosts plays a critical role in parasite transmission. Using field-derived strains of Kenyan snails and parasites, we tested two main hypotheses: (1) Parasites prefer the most compatible host, and (2) parasites avoid hosts that are already infected. We tested preference to three Biomphalaria host snail taxa (B. pfeifferi, B. sudanica, and B. choanomphala), using allopatric and sympatric Schistosoma mansoni isolates and two different nonhost snail species that co-occur with Biomphalaria, Bulinus globosus, and Physa acuta. We also tested whether schistosomes avoid snail hosts that are already infected by another trematode species and whether competitive dominance played a role in their behavior. Preference was assessed using two-way choice chambers and by visually counting parasites that moved toward competing stimuli. In pairwise comparisons, we found that S. mansoni did not always prefer the more compatible snail taxon, but never favored an incompatible host over a compatible host. While parasites preferred B. pfeifferi to the nonhost species B. globosus, they did not significantly prefer B. pfeifferi versus P. acuta, an introduced species in Kenya. Finally, we demonstrated that parasites avoid infected snails if the resident parasite was competitively dominant (Patagifer sp.), and preferred snails infected with subordinates (xiphidiocercariae) to uninfected snails. These results provide evidence of "fine tuning" in the ability of schistosome miracidia to detect hosts; however, they did not always select hosts that would maximize fitness. Appreciating such discriminatory abilities could lead to a better understanding of how ecosystem host and parasite diversity influences disease transmission and could provide novel control mechanisms to improve human health.

SELECTION OF CITATIONS
SEARCH DETAIL
...