Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(14): 24326-24351, 2022 Jul 04.
Article in English | MEDLINE | ID: mdl-36236990

ABSTRACT

The atmospheric concentration of methane has more than doubled since the start of the Industrial Revolution. Methane is the second-most-abundant greenhouse gas created by human activities and a major driver of climate change. This APS-Optica report provides a technical assessment of the current state of monitoring U.S. methane emissions from oil and gas operations, which accounts for roughly 30% of U.S. anthropogenic methane emissions. The report identifies current technological and policy gaps and makes recommendations for the federal government in three key areas: methane emissions detection, reliable and systematized data and models to support mitigation measures, and effective regulation.


Subject(s)
Air Pollutants , Greenhouse Gases , Greenhouse Gases/analysis , Humans , Methane/analysis
2.
Front Public Health ; 8: 578463, 2020.
Article in English | MEDLINE | ID: mdl-33178663

ABSTRACT

The Gulf of Mexico (GoM) region is prone to disasters, including recurrent oil spills, hurricanes, floods, industrial accidents, harmful algal blooms, and the current COVID-19 pandemic. The GoM and other regions of the U.S. lack sufficient baseline health information to identify, attribute, mitigate, and facilitate prevention of major health effects of disasters. Developing capacity to assess adverse human health consequences of future disasters requires establishment of a comprehensive, sustained community health observing system, similar to the extensive and well-established environmental observing systems. We propose a system that combines six levels of health data domains, beginning with three existing, national surveys and studies plus three new nested, longitudinal cohort studies. The latter are the unique and most important parts of the system and are focused on the coastal regions of the five GoM States. A statistically representative sample of participants is proposed for the new cohort studies, stratified to ensure proportional inclusion of urban and rural populations and with additional recruitment as necessary to enroll participants from particularly vulnerable or under-represented groups. Secondary data sources such as syndromic surveillance systems, electronic health records, national community surveys, environmental exposure databases, social media, and remote sensing will inform and augment the collection of primary data. Primary data sources will include participant-provided information via questionnaires, clinical measures of mental and physical health, acquisition of biological specimens, and wearable health monitoring devices. A suite of biomarkers may be derived from biological specimens for use in health assessments, including calculation of allostatic load, a measure of cumulative stress. The framework also addresses data management and sharing, participant retention, and system governance. The observing system is designed to continue indefinitely to ensure that essential pre-, during-, and post-disaster health data are collected and maintained. It could also provide a model/vehicle for effective health observation related to infectious disease pandemics such as COVID-19. To our knowledge, there is no comprehensive, disaster-focused health observing system such as the one proposed here currently in existence or planned elsewhere. Significant strengths of the GoM Community Health Observing System (CHOS) are its longitudinal cohorts and ability to adapt rapidly as needs arise and new technologies develop.


Subject(s)
COVID-19 , Disasters , Gulf of Mexico , Humans , Longitudinal Studies , Pandemics , Public Health , SARS-CoV-2
3.
Phys Rev Lett ; 118(15): 157203, 2017 Apr 14.
Article in English | MEDLINE | ID: mdl-28452535

ABSTRACT

We measure the field dependence of spin glass free energy barriers in a thin amorphous Ge:Mn film through the time dependence of the magnetization. After the correlation length ξ(t,T) has reached the film thickness L=155 Å so that the dynamics are activated, we change the initial magnetic field by δH. In agreement with the scaling behavior exhibited in a companion Letter [M. Baity-Jesi et al., Phys. Rev. Lett. 118, 157202 (2017)PRLTAO0031-900710.1103/PhysRevLett.118.157202], we find that the activation energy is increased when δH<0. The change is proportional to (δH)^{2} with the addition of a small (δH)^{4} term. The magnitude of the change of the spin glass free energy barriers is in near quantitative agreement with the prediction of a barrier model.

4.
Phys Rev Lett ; 112(12): 126401, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24724664

ABSTRACT

A dynamical method is introduced to study the effect of dimensionality on phase transitions. Direct experimental measurements for the lower critical dimension for spin glasses is provided as an example. The method makes use of the spin glass correlation length ξ(t,T). Once nucleated, it can become comparable to sample dimensions in convenient time and temperature ranges. Thin films of amorphous Ge:Mn alloys were prepared with thickness L≈15.5 nm. Conventional behavior is observed as long as ξ(t,T)

SELECTION OF CITATIONS
SEARCH DETAIL
...