Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters











Publication year range
1.
Commun Biol ; 6(1): 1193, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001280

ABSTRACT

The dengue protease NS2B/NS3pro has been reported to adopt either an 'open' or a 'closed' conformation. We have developed a conformational filter that combines NMR with MD simulations to identify conformational ensembles that dominate in solution. Experimental values derived from relaxation parameters for the backbone and methyl side chains were compared with the corresponding back-calculated relaxation parameters of different conformational ensembles obtained from free MD simulations. Our results demonstrate a high prevalence for the 'closed' conformational ensemble while the 'open' conformation is absent, indicating that the latter conformation is most probably due to crystal contacts. Conversely, conformational ensembles in which the positioning of the co-factor NS2B results in a 'partially' open conformation, previously described in both MD simulations and X-ray studies, were identified by our conformational filter. Altogether, we believe that our approach allows for unambiguous identification of true conformational ensembles, an essential step for reliable drug discovery.


Subject(s)
Dengue , Peptide Hydrolases , Humans , Serine Endopeptidases/chemistry , Molecular Dynamics Simulation , Protein Conformation , Viral Nonstructural Proteins/chemistry
2.
Biomol NMR Assign ; 16(2): 363-371, 2022 10.
Article in English | MEDLINE | ID: mdl-36094731

ABSTRACT

Mucosa-associated lymphoid tissue protein 1 (MALT1) plays a key role in adaptive immune responses by modulating specific intracellular signalling pathways that control the development and proliferation of both T and B cells. Dysfunction of these pathways is coupled to the progress of highly aggressive lymphoma as well as to potential development of an array of different immune disorders. In contrast to other signalling mediators, MALT1 is not only activated through the formation of the CBM complex together with the proteins CARMA1 and Bcl10, but also by acting as a protease that cleaves multiple substrates to promote lymphocyte proliferation and survival via the NF-κB signalling pathway. Herein, we present the partial 1H, 13C Ile/Val/Leu-Methyl resonance assignment of the monomeric apo form of the paracaspase-IgL3 domain of human MALT1. Our results provide a solid ground for future elucidation of both the three-dimensional structure and the dynamics of MALT1, key for adequate development of inhibitors, and a thorough molecular understanding of its function(s).


Subject(s)
Caspases , NF-kappa B , CARD Signaling Adaptor Proteins/metabolism , Caspases/metabolism , Humans , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , NF-kappa B/metabolism , Neoplasm Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular
3.
Biomol NMR Assign ; 16(1): 135-145, 2022 04.
Article in English | MEDLINE | ID: mdl-35149939

ABSTRACT

The serotype II Dengue (DENV 2) virus is the most prevalent of all four known serotypes. Herein, we present nearly complete 1H, 15N, and 13C backbone and 1H, 13C isoleucine, valine, and leucine methyl resonance assignment of the apo S135A catalytically inactive variant of the DENV 2 protease enzyme folded as a tandem formed between the serine protease domain NS3pro and the cofactor NS2B, as well as the secondary structure prediction of this complex based on the assigned chemical shifts using the TALOS-N software. Our results provide a solid ground for future elucidation of the structure and dynamic of the apo NS3pro/NS2B complex, key for adequate development of inhibitors, and a thorough molecular understanding of their function(s).


Subject(s)
Dengue Virus , Dengue , Dengue Virus/chemistry , Dengue Virus/metabolism , Humans , Mutant Proteins , Nuclear Magnetic Resonance, Biomolecular , Viral Nonstructural Proteins/chemistry
4.
Chem Commun (Camb) ; 56(93): 14585-14588, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33146166

ABSTRACT

NMR spectroscopy is one of the basic tools for molecular structure elucidation. Unfortunately, the resolution of the spectra is often limited by inter-nuclear couplings. The existing workarounds often alleviate the problem by trading it for another deficiency, such as spectral artefacts or difficult sample preparation and, thus, are rarely used. We suggest an approach using the coupling deconvolution in the framework of compressed sensing (CS) spectra processing that leads to a major increase in resolution, sensitivity, and overall quality of NUS reconstruction. A new mathematical description of the decoupling by deconvolution explains the effects of thermal noise and reveals a relation with the underlying assumption of the CS. The gain in resolution and sensitivity for challenging molecular systems is demonstrated for the key HNCA experiment used for protein backbone assignment applied to two large proteins: intrinsically disordered 441-residue Tau and a 509-residue globular bacteriophytochrome fragment. The approach will be valuable in a multitude of chemistry applications, where NMR experiments are compromised by the homonuclear scalar coupling.

5.
Virology ; 537: 130-142, 2019 11.
Article in English | MEDLINE | ID: mdl-31493651

ABSTRACT

Alphavirus nsP3 proteins contain long, intrinsically disordered, hypervariable domains, HVD, which serve as hubs for interaction with many cellular proteins. Here, we have deciphered the mechanism and function of HVD interaction with host factors in alphavirus replication. Using NMR spectroscopy, we show that CHIKV HVD contains two SH3 domain-binding sites. Using an innovative chemical shift perturbation signature approach, we demonstrate that CD2AP interaction with HVD is mediated by its SH3-A and SH3-C domains, and this leaves the SH3-B domain available for interaction with other cellular factor(s). This cooperative interaction with two SH3 domains increases binding affinity to CD2AP and possibly induces long-range allosteric effects in HVD. Our data demonstrate that BIN1, CD2AP and SH3KBP1 play redundant roles in initiation of CHIKV replication. Point mutations in both CHIKV HVD binding sites abolish its interaction with all three proteins, CD2AP, BIN1 and SH3KBP1. This results in strong inhibition of viral replication initiation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Chikungunya virus/physiology , Cytoskeletal Proteins/metabolism , Host-Pathogen Interactions , Viral Nonstructural Proteins/metabolism , Virus Replication , Binding Sites , Cells, Cultured , Fibroblasts/virology , Humans , Magnetic Resonance Spectroscopy , Nuclear Proteins/metabolism , Protein Binding , Protein Interaction Mapping , Tumor Suppressor Proteins/metabolism
6.
Angew Chem Int Ed Engl ; 57(43): 14043-14045, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30175546

ABSTRACT

NMR studies of intrinsically disordered proteins and other complex biomolecular systems require spectra with the highest resolution and dimensionality. An efficient approach, extra-large NMR spectroscopy, is presented for experimental data collection, reconstruction, and handling of very large NMR spectra by a combination of the radial and non-uniform sampling, a new processing algorithm, and rigorous statistical validation. We demonstrate the first high-quality reconstruction of a full seven-dimensional HNCOCACONH and two five-dimensional HACACONH and HN(CA)CONH experiments for a representative intrinsically disordered protein α-synuclein. XLSY will significantly enhance the NMR toolbox in challenging biomolecular studies.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Algorithms , Intrinsically Disordered Proteins/chemistry , Protein Conformation , alpha-Synuclein/chemistry
7.
Nat Commun ; 7: 13634, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929062

ABSTRACT

The Hha and TomB proteins from Escherichia coli form an oxygen-dependent toxin-antitoxin (TA) system. Here we show that YmoB, the Yersinia orthologue of TomB, and its single cysteine variant [C117S]YmoB can replace TomB as antitoxins in E. coli. In contrast to other TA systems, [C117S]YmoB transiently interacts with Hha (rather than forming a stable complex) and enhances the spontaneous oxidation of the Hha conserved cysteine residue to a -SOxH-containing species (sulfenic, sulfinic or sulfonic acid), which destabilizes the toxin. The nuclear magnetic resonance structure of [C117S]YmoB and the homology model of TomB show that the two proteins form a four-helix bundle with a conserved buried cysteine connected to the exterior by a channel with a diameter comparable to that of an oxygen molecule. The Hha interaction site is located on the opposite side of the helix bundle.


Subject(s)
DNA-Binding Proteins/physiology , Escherichia coli Proteins/physiology , Toxin-Antitoxin Systems/physiology , Amino Acid Sequence , Escherichia coli K12 , Oxidation-Reduction , Protein Conformation , Yersinia/chemistry
8.
J Biomol NMR ; 63(1): 9-19, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26123316

ABSTRACT

Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality with short measurement times, faster computations than the fast Fourier transform, and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated for a 4D BEST-HNCOCA spectrum.


Subject(s)
Algorithms , Fourier Analysis , Nuclear Magnetic Resonance, Biomolecular/methods , Humans , Time Factors , Ubiquitin/chemistry
9.
PLoS One ; 8(7): e68567, 2013.
Article in English | MEDLINE | ID: mdl-23874675

ABSTRACT

Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/instrumentation , Proteins/chemistry , Algorithms
10.
J Magn Reson ; 223: 1-10, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22960668

ABSTRACT

The resolution of multidimensional NMR spectra can be severely limited when regular sampling based on the Nyquist-Shannon theorem is used. The theorem binds the sampling rate with a bandwidth of a sampled signal and thus implicitly creates a dependence between the line width and the time of experiment, often making the latter one very long. Recently, Candès et al. (2006) [25] formulated a non-linear sampling theorem that determines the required number of sampling points to be dependent mostly on the number of peaks in a spectrum and only slightly on the number of spectral points. The result was pivotal for rapid development and broad use of signal processing method called compressed sensing. In our previous work, we have introduced compressed sensing to multidimensional NMR and have shown examples of reconstruction of two-dimensional spectra. In the present paper we discuss in detail the accuracy and robustness of two compressed sensing algorithms: convex (iterative soft thresholding) and non-convex (iteratively re-weighted least squares with local ℓ(0)-norm) in application to two- and three-dimensional datasets. We show that the latter method is in many terms more effective, which is in line with recent works on the theory of compressed sensing. We also present the comparison of both approaches with multidimensional decomposition which is one of the established methods for processing of non-linearly sampled data.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Algorithms , Azurin/chemistry , Electromagnetic Fields , Humans , Least-Squares Analysis , Ubiquitin/chemistry
12.
13.
J Neurosci Methods ; 195(1): 47-60, 2011 Jan 30.
Article in English | MEDLINE | ID: mdl-21115046

ABSTRACT

Scalp-recorded EEG activity reflects a number of oscillatory phenomena, many of which are generated by coupled brain sources or behave as travelling waves. Decomposition of EEG oscillations into sets of coherent processes may help investigation of the underlying functional brain networks. Traditional decomposition methods, such as ICA and PCA, cannot satisfactorily characterize coherent EEG oscillations. Moreover, these methods impose non-physiological constraints (orthogonality, maximal time independence) on the solutions. We introduce the C(3)R-MDD method, that is based on recursive multi-dimensional decomposition (R-MDD). The method allows separation of ongoing EEG into a predefined number of coherent oscillatory processes. Applied to a multichannel complex cross-correlation array (C(3)), the method extracts oscillatory processes characterized by a dominant frequency, spatial amplitude-phase distribution, and stability in time. Introduction of an additional dimension of experimental conditions allows characterization of condition-related dynamics of the processes. In this study, we first used C(3)R-MDD to decompose a simulated signal created by superposition of components with known properties. Meaningful solutions were obtained even with a suboptimal number of components in the model. Second, we applied the method to decompose rhythmic processes in ongoing low- and high-frequency EEG records of two subjects and demonstrated good reproducibility of the components obtained with different solutions, two halves of the EEG record, and different experimental sessions. The C(3)R-MDD method is compared with other types of signal decomposition: real-numbers ICA and real-numbers MDD.


Subject(s)
Brain Mapping/methods , Brain/physiology , Electroencephalography/methods , Models, Neurological , Signal Processing, Computer-Assisted , Adult , Female , Humans , Young Adult
14.
Nat Commun ; 1: 119, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21081917

ABSTRACT

Superantigens (SAgs) are bacterial toxins that interact with immunoreceptors, T cell receptor (TCR) and major histocompatibility complex (MHC) class II, conventionally through the variable ß-domain of TCR (TCRVß). They induce a massive release of cytokines, which can lead to diseases such as food poisoning and toxic shock syndrome. In this study, we report the X-ray structure of the ternary complex between staphylococcal enterotoxin H (SEH) and its human receptors, MHC class II and TCR. The structure demonstrates that SEH predominantly interacts with the variable α-domain of TCR (TCRVα), which is supported by nuclear magnetic resonance (NMR) analyses. Furthermore, there is no contact between MHC and TCR upon complex formation. Structural analyses suggest that the major contact points to TCRVα are conserved among other bacterial SAgs. Consequently, a new dimension of SAg biology emerges, suggesting that in addition to the conventional interactions with the TCRVß domain, SAgs can also activate T cells through the TCRVα domain.

15.
J Am Chem Soc ; 130(12): 3927-36, 2008 Mar 26.
Article in English | MEDLINE | ID: mdl-18311971

ABSTRACT

An approach is described for joint interleaved recording, real-time processing, and analysis of NMR data sets. The method employs multidimensional decomposition to find common information in a set of conventional triple-resonance spectra recorded in the nonlinear sampling mode, and builds a model of hyperdimensional (HD) spectrum. While preserving sensitivity per unit of measurement time and allowing for maximal spectral resolution, the approach reduces data collection time on average by 2 orders of magnitude compared to the conventional method. The 7-10 dimensional HD spectrum, which is represented as a set of deconvoluted 1D vectors, is easy to handle and amenable for automated analysis. The method is exemplified by automated assignment for two protein systems of low and high spectral complexity: ubiquitin (globular, 8 kDa) and zetacyt (naturally disordered, 13 kDa). The collection and backbone assignment of the data sets are achieved in real time after approximately 1 and 10 h, respectively. The approach removes the most critical time bottlenecks in data acquisition and analysis. Thus, it can significantly increase the value of NMR spectroscopy in structural biology, for example, in high-throughput structural genomics applications.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Ubiquitin/chemistry , Algorithms , Computer Simulation , Reference Standards , Sensitivity and Specificity , Time Factors
17.
J Mol Biol ; 367(4): 1079-92, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17306298

ABSTRACT

NMR spectroscopy and computer simulations were used to examine changes in chemical shifts and in dynamics of the ribonuclease barnase that result upon binding to its natural inhibitor barstar. Although the spatial structures of free and bound barnase are very similar, binding results in changes of the dynamics of both fast side-chains, as revealed by (2)H relaxation measurements, and NMR chemical shifts in an extended beta-sheet that is located far from the binding interface. Both side-chain dynamics and chemical shifts are sensitive to variations in the ensemble populations of the inter-converting molecular states, which can escape direct structural observation. Molecular dynamics simulations of free barnase and barnase in complex with barstar, as well as a normal mode analysis of barnase using a Gaussian network model, reveal relatively rigid domains that are separated by the extended beta-sheet mentioned above. The observed changes in NMR parameters upon ligation can thus be rationalized in terms of changes in inter-domain dynamics and in populations of exchanging states, without measurable structural changes. This provides an alternative model for the propagation of a molecular response to ligand binding across a protein that is based exclusively on changes in dynamics.


Subject(s)
Bacterial Proteins/metabolism , Computer Simulation , Nuclear Magnetic Resonance, Biomolecular , Ribonucleases/chemistry , Ribonucleases/metabolism , Models, Molecular , Protein Conformation , Protein Structure, Tertiary
18.
Biochimie ; 89(3): 419-21, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17174464

ABSTRACT

There are a large number of protein domains and even entire proteins, lacking ordered structure under physiological conditions. Intriguingly, a highly flexible, random coil-like conformation is the native and functional state for many proteins known to be involved in cell signaling. An example is a key component of immune signaling, the cytoplasmic region of the T cell receptor zeta subunit. This domain exhibits specific dimerization that is distinct from non-specific aggregation behavior seen in many systems. In this work, we use diffusion and chemical shift mapping NMR data to show that the protein does not undergo a transition between disordered and ordered states upon dimerization. This finding opposes the generally accepted view on the behavior of intrinsically disordered proteins, provides evidence for the existence of specific dimerization interactions for intrinsically disordered protein species and opens a new line of research in this new and quickly developing field.


Subject(s)
Protein Folding , Proteins/chemistry , Dimerization , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Structure, Tertiary
19.
J Am Chem Soc ; 128(41): 13421-6, 2006 Oct 18.
Article in English | MEDLINE | ID: mdl-17031954

ABSTRACT

A target-oriented approach for the acquisition of information in biomolecular NMR spectroscopy is being developed. This approach combines concurrent data accumulation, processing, and monitoring of spectral quality. Real-time estimation of parameters allows acquisition to be stopped when results are complete and have a specified precision. The technique is based on multidimensional decomposition, which can process incomplete data. An incremental nonuniform sampling scheme ensures the optimization of resolution sensitivity. To validate this method, 3D HNCO spectra of three biomolecular systems (8 kDa ubiquitin, 22 kDa barstar-barnase complex, and 82 kDa malate synthase G) are processed incrementally at small acquisition time steps. The range of molecular sizes illustrates applicability in both sample- and sensitivity-limited regimes. In each case, the target was to acquire all backbone resonances in the spectra. For the three systems, the targets are achieved after 4.5 min, 1.6 h, and 22 h of acquisition time, respectively. A number of other targets that can be similarly monitored as a function of time are discussed.


Subject(s)
Bacterial Proteins/analysis , Magnetic Resonance Spectroscopy/methods , Malate Synthase/chemistry , Ribonucleases/analysis , Ubiquitin/analysis , Bacterial Proteins/chemistry , Malate Synthase/analysis , Molecular Weight , Reproducibility of Results , Ribonucleases/chemistry , Sensitivity and Specificity , Time Factors , Ubiquitin/chemistry
20.
Nat Methods ; 3(8): 605-7, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16862134

ABSTRACT

We introduce the recursive multidimensional decomposition (R-MDD) method to speed recording of high-resolution NMR spectra. The measurement time is logarithmically dependent on the sizes of indirect spectral dimensions. R-MDD has the sensitivity and resolution advantages of optimized nonuniform acquisition schemes and is applicable to all types of biomolecular spectra. We demonstrated it for triple resonance experiments on three globular proteins (ubiquitin, azurin and the barstar-barnase complex) of 8-22 kDa.


Subject(s)
Algorithms , Biopolymers/analysis , Biopolymers/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Proteins/analysis , Proteins/chemistry , Software , Computer Simulation , Models, Molecular , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL