Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(3)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36986617

ABSTRACT

Chagas disease is a neglected tropical disease that affects more than 8 million people. Although there are therapies against this disease, the search for new drugs is important because the current treatments show limited effectiveness and high toxicity. In this work, eighteen dihydrobenzofuran-type neolignans (DBNs) and two benzofuran-type neolignans (BNs) were synthesized and evaluated against amastigote forms of two Trypanosoma cruzi strains. The in vitro cytotoxicity and hemolytic activity of the most active compounds were also evaluated and their relationships with T. cruzi tubulin DBNs were investigated by an in silico approach. Four DBNs demonstrated activity against the T. cruzi Tulahuen lac-Z strain (IC50 from 7.96 to 21.12 µM), and DBN 1 exhibited the highest activity against the amastigote forms of the T. cruzi Y strain (IC50 3.26 µM). Compounds 1-4 showed CC50 values higher than antitrypanosomal activities, except for DBN 3. All DBNs with antitrypanosomal activity demonstrated CH50 higher than 100 µM. The in silico results indicated that DBNs 1, 2, and 4 are capable of destabilizing the dynamics of the tubulin-microtubule from the vinca site. These compounds displayed promising in vitro activity against T. cruzi, especially compound 1, and can be considered molecular prototypes for the development of new antiparasitic drugs.

2.
J Comput Chem ; 44(10): 1040-1051, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36576316

ABSTRACT

Gold and silver subnanoclusters with few atoms are prominent candidates for catalysis-related applications, primarily because of the large fraction of lower-coordinated atoms exposed and ready to interact with external chemical species. However, an in-depth energetic analysis is necessary to characterize the relevant terms within the molecular adsorption process that can frame the interactions within the Sabatier principle. Herein, we investigate the interaction between Agn and Aun subnanoclusters (clu, n = 2-7) and N2 , NO, CO, and O2 molecules, using scalar-relativistic density functional theory calculations within van der Waals D3 corrections. The onefold top site is preferred for all chemisorption cases, with a predominance of linear (≈180°) and bent (≈120°) molecular geometries. A larger magnitude of adsorption energy is correlated with smaller distances between molecules and clusters and with the weakening of the adsorbates bond strength represented by the increase of the equilibrium distances and decrease of molecular stretching frequencies. From the energetic decomposition, the interaction energy term was established as an excellent descriptor to classify subnanoclusters in the adsorption/desorption process concomitant with the Sabatier principle. The limiting cases: (i) weak molecular adsorption on the subnanoclusters, which may compromise the reaction activation, where an interaction energy magnitude close to 0 eV is observed (e.g., physisorption in N2 /Ag6 ); and (ii) strong molecular interactions with the subnanoclusters, given the interaction energy magnitude is larger than at least one of the individual fragment binding energies (e.g., strong chemisorption in CO/Au4 and NO/Au4 ), conferring a decrease in the desorption rate and an increase in the possible poisoning rate. However, the intermediate cases are promising by involving interaction energy magnitudes between zero and fragment binding energies. Following the molecular closed-shell (open-shell) electronic configuration, we find a predominant electrostatic (covalent) nature of the physical interactions for N2 ⋯clu and CO ⋯clu (O2 ⋯clu and NO⋯clu), except in the physisorption case (N2 /Ag6 ) where dispersive interaction is dominant. Our results clarify questions about the molecular adsorption on subnanoclusters as a relevant mechanistic step present in nanocatalytic reactions.

3.
J Biochem Mol Toxicol ; 37(3): e23282, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36541366

ABSTRACT

Melanoma is the most aggressive and lethal type of skin cancer, characterized by therapeutic resistance. In this context, the present study aimed to investigate the cytotoxic potential of manool, a diterpene from Salvia officinalis L., in human (A375) and murine (B16F10) melanoma cell lines. The analysis of cytotoxicity using the XTT assay showed the lowest IC50 after 48 h of treatment with the manool, being 17.6 and 18.2 µg/ml for A375 and B16F10, respectively. A selective antiproliferative effect of manool was observed on the A375 cells based on the colony formation assay, showing an IC50 equivalent to 5.6 µg/ml. The manool treatments led to 43.5% inhibition of the A375 cell migration at a concentration of 5.0 µg/ml. However, it did not affect cell migration in the B16F10 cells. Cell cycle analysis revealed that the manool interfered in the cell cycle of the A375 cells, blocking the G2/M phase. No changes in the cell cycle were observed in the B16F10 cells. Interestingly, manool did not induce apoptosis in the A375 cells, but apoptosis was observed after treatment of the B16F10 cells. Additionally, manool showed an antimelanoma effect in a reconstructed human skin model. Furthermore, in silico studies, showed that manool is stabilized in the active sites of the tubulin dimer with comparable energy concerning taxol, indicating that both structures can inhibit the proliferation of cancer cells. Altogether, it is concluded that manool, through the modulation of the cell cycle, presents a selective antiproliferative activity and a potential antimelanoma effect.


Subject(s)
Diterpenes , Melanoma , Skin Neoplasms , Humans , Animals , Mice , Cell Line, Tumor , Melanoma/metabolism , Diterpenes/pharmacology , Apoptosis , Cell Culture Techniques , Cell Proliferation
4.
Chem Biol Interact ; 368: 110191, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36181831

ABSTRACT

Praziquantel (PZQ) is the only drug available for community-based control programs which aim to reduce the prevalence and morbidity associated with schistosomiasis. Here, we synthesized and evaluated the schistosomicidal, biochemical and cytotoxic activities of EF24, a synthetic curcumin analog, against different isolates of Schistosoma mansoni. EF24 elicited marked phenotypic alterations at 10 µM against schistosomula and 42-day-old adult worms of the Naval Medical Research Institute (NMRI) isolate. EF24 had 50% effective concentration (EC50) values of <10 µM against the Luis Evangelista (LE), Sergipe (SE), Belo Horizonte (BH) and Belo Horizonte less sensitive to PZQ (BH < PZQ) isolates of adult S. mansoni; however, the respective sensitivities of these isolates differed. Changes in the parasite included, vacuolization of the tegument and focal lysis of the interstitial tissue and muscle layers. Against 28-day-old juvenile worms (LE isolate), EF24 was about three times more potent than PZQ. After 6 h at 12.5 µM, EF24 increased reactive oxygen species (ROS) and the activity of the antioxidant enzyme, glutathione-S-transferase (GST), by 32 and 19% in female and male adult worms, respectively. By contrast, after 6 h at 12.5 µM glutathione reductase (GR) activity decreased by 43 and 30%, and glutathione peroxidase (GPx) activity decreased by 67 and 44% in females and males, respectively. EF24 was less cytotoxic to mammalian host cells than to S. mansoni, with selectivity indexes (SIs) of 1.8-3.4 and 2.7-7.5 for juvenile and adult worms, respectively. Given the current evidence for the in vitro schistosomicidal effect of EF24, the structure-activity relationship of additional analogs to identify new candidates for schistosomiasis treatment is warranted.


Subject(s)
Curcumin , Schistosoma mansoni , Schistosomicides , Animals , Female , Male , Antioxidants/metabolism , Curcumin/analogs & derivatives , Curcumin/pharmacology , Mammals , Praziquantel/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis/drug therapy , Schistosomicides/pharmacology , Glutathione Peroxidase/metabolism , Glutathione Transferase/metabolism , Reactive Oxygen Species/metabolism , Glutathione Reductase/metabolism
5.
Phys Chem Chem Phys ; 24(11): 6515-6524, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35257130

ABSTRACT

The complexity of Cu13, Ag13, and Au13 coinage-metal clusters was investigated through their energy contributions via a density functional theory study, considering improvements in the PBE functional, such as van der Waals (vdW) corrections, spin-orbit coupling (SOC), Hubbard term (+U), and their combinations. Investigating two-dimensional (planar 2D) and three-dimensional (distorted 3D, CUB - cuboctahedral, and ICO - icosahedral) configurations, we found that vdW corrections are dominant in modulating the stability swapping between 2D and ICO (3D) for Ag13 (Au13), whereas for Cu13 its role is increasing the relative stability between 2D (least stable) and 3D (most stable), setting ICO as the reference. Among the energy portions that constitute the relative total energy, the dimensionality difference correlates with the magnitude of the relative dispersion energy (large for 2D/ICO and small for 3D/ICO) as the causal factor responsible for an eventual stability swapping. For instance, empirical vdW corrections may favor Ag13 as ICO, while semi empirical ones tend to swap the stability by favoring 2D. The same tendency is observed for Au13, except when SOC is included, which enlarges the stability of 3D over 2D. Energy decomposition analysis combined with the natural orbitals for the chemical valence approach confirmed the correlations between the dimensionality difference and the magnitude of the relative dispersion energies. Our structural analysis protocol was able to capture the local distortion effects (or even their absence) through the quantification of the Hausdorff chirality measure. Here, ICO, CUB, and 2D are achiral configurations for all coinage-metal clusters, whereas Cu13 as 3D presents a slight chirality when vdW correction based on many body dispersion is used, at the same time Ag13 as 3D turned out to be chiral for all calculation protocols as evidence of the role of the chemical composition.

6.
Nat Prod Res ; 36(18): 4696-4703, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34736364

ABSTRACT

This work aimed to synthesize poly (D, L-lactic-co-glycolic acid) (PLGA) microparticles containing hinokinin (HNK) and to evaluate their cytotoxic activity against tumoral SiHa cells and non-tumoral HaCaT cells. Hinokinin was incorporated into PLGA (PLGA-HNK) with an encapsulation efficiency of 84.18 ± 2.32%. PLGA and PLGA-HNK were characterized by SEM microscopy and showed spherical morphology with an average size of ∼3.33. Encapsulation efficiency was determined by a calibration curve using UV-vis spectroscopy. PLGA-HNK more active inhibiting proliferation of SiHa cells (IC50 = 14.68 µM) than free HNK (IC50 = 225.5 µM). In relation to HaCaT cells, PLGA-HNK showed no significant difference compared to the negative control. These results led to an increase in HNK bioavailability and thereby, biological activity. In silico prediction analysis suggests that HNK is cytotoxic against SiHa cells with E6 and MDM2 inhibition as possible main mechanism of action.


Subject(s)
Antineoplastic Agents , Nanoparticles , 4-Butyrolactone/analogs & derivatives , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzodioxoles , Lactic Acid/chemistry , Lignans , Nanoparticles/chemistry , Particle Size , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer
7.
J Comput Chem ; 43(4): 230-243, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34751955

ABSTRACT

The coinage-metal clusters possess a natural complexity in their theoretical treatment that may be accompanied by inherent shortcomings in the methodological approach. Herein, we performed a scalar-relativistic density functional theory study, considering Perdew, Burke, and Ernzerhof (PBE) with (empirical and semi empirical) van der Waals (vdW), spin-orbit coupling (SOC), +U (Hubbard term), and their combinations, to treat the Cu 13 , Ag 13 , and Au 13 clusters in different structural motifs. The energetic scenario is given by the confirmation of the 3D lowest energy configurations for Cu 13 and Ag 13 within all approaches, while for Au 13 there is a 2D/3D competition, depending on the applied correction. The 2D geometry is 0.43 eV more stable with plain PBE than the 3D one, the SOC, +U, and/or vdW inclusion decreases the overestimated stability of the planar configurations, where the most surprising result is found by the D3 and D3BJ vdW corrections, for which the 3D configuration is 0.29 and 0.11 eV, respectively, more stable than the 2D geometry (with even higher values when SOC and/or +U are added). The D3 dispersion correction represents 7.9% (4.4%) of the total binding energy for the 3D (2D) configuration, (not) being enough to change the sd hybridization and the position of the occupied d -states. Our predictions are in agreement with experimental results and in line with the best results obtained for bulk systems, as well as with hybrid functionals within D3 corrections. The properties description undergoes small corrections with the different approaches, where general trends are maintained, that is, the average bond length is smaller (larger) for lower (higher)-coordinated structures, since a same number of electrons are shared by a smaller (larger) number of bonds, consequently, the bonds are stronger (weaker) and shorter (longer) and the sd hybridization index is larger (smaller). Thus, Au has a distinct behavior in relation to its lighter congeners, with a complex potential energy surface, where in addition to the relevant relativistic effects, correlation and dispersion effects must also be considered.

8.
Nat Prod Res ; 36(22): 5872-5878, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34963393

ABSTRACT

Lignan dinitrohinokinin displays important biological activities, which led to the preparation of its poly-ε-caprolactone nanoparticles. Kinetics analysis revealed initially slow drug release followed by a prolonged, moderate release 6 h later due to DNHK diffusion through the polymeric matrix. Molecular dynamics simulations show that DNHK molecules that interact stronger with other DNHK molecules near the PCL/DNHK surface are more difficult to dissociate from the nanoparticle. The smaller diameter nanocapsules with negative surface charge conferred good colloidal stability. The formulations showed a size distribution with monodisperse systems formation. In vivo evaluation of schistosomicidal activity against Schistosoma mansoni showed that DNHK, when incorporated into nanoparticles, caused egg number reduction of 4.2% and 28.1% at 40 mg/kg and 94.2% and 84.4% at 400 mg/kg in the liver and the spleen, respectively. The PCL nanoparticles were stable in aqueous dispersion and could be optimized to be used as a promising lignan release agent.


Subject(s)
Lignans , Nanoparticles , Schistosomicides , Drug Carriers , Lignans/pharmacology , Polyesters
9.
Chem Biodivers ; 18(8): e2100307, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34086414

ABSTRACT

Brazilian green and red propolis stand out as commercial products for different medical applications. In this article, we report the antimicrobial activities of the hydroalcoholic extracts of green (EGP) and red (ERP) propolis, as well as guttiferone E plus xanthochymol (8) and oblongifolin B (9) from red propolis, against multidrug-resistant bacteria (MDRB). We undertook the minimal inhibitory (MIC) and bactericidal (MBC) concentrations, inhibition of biofilm formation (MICB50 ), catalase, coagulase, DNase, lipase, and hemolysin assays, along with molecular docking simulations. ERP was more effective by displaying MIC and MBC values <100 µg mL-1 . Compounds 8 and 9 displayed the lowest MIC values (0.98 to 31.25 µg mL-1 ) against all tested Gram-positive MDRB. They also inhibited the biofilm formation of S. aureus (ATCC 43300 and clinical isolate) and S. epidermidis (ATCC 14990 and clinical isolate), with MICB50 values between 1.56 and 6.25 µg mL-1 . The molecular docking results indicated that 8 and 9 might interact with the catalase's amino acids. Compounds 8 and 9 have great antimicrobial potential.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Propolis/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Benzophenones/chemistry , Benzophenones/isolation & purification , Benzophenones/metabolism , Benzophenones/pharmacology , Binding Sites , Biofilms/drug effects , Brazil , Catalase/chemistry , Catalase/metabolism , Catalytic Domain , Microbial Sensitivity Tests , Molecular Docking Simulation , Propolis/metabolism , Propolis/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
10.
J Phys Chem A ; 125(22): 4805-4818, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34048257

ABSTRACT

Small iridium nanoclusters are prominent subnanometric systems for catalysis-related applications, mainly because of a large surface-to-volume ratio, noncoalescence feature, and tunable properties, which are completely influenced by the number of atoms, geometry, and molecular interaction with the chemical environment. Herein, we investigate the interaction between Irn nanoclusters (n = 2-7) and polluting molecules, CO, NO, and SO, using van der Waals D3 corrected density functional theory calculations. Starting from a representative structural set, we determine the growth pattern of the lowest energy unprotected Irn nanoclusters, which is based on open structural motifs, and from the adsorption of a XO (X = C, N, and S) molecule, the preferred high-symmetric adsorption sites were determined, dominated by the onefold top site. For protected systems, 4XO/Ir4 and 6XO/Ir6, we found a reduction in the total magnetic moment, while the equilibrium bonds of the nanoclusters expanded (contracted) due to mCO and mNO (mSO) adsorption, with exceptions for systems with large structural distortions (4SO/Ir4 and 6NO/Ir6). Meanwhile, the C-O and N-O (S-O) bond strength decreases (increases) following an increase (decrease) in the C-O and N-O (S-O) distances upon adsorption. We show, through energetic analysis, that for the different chemical environments, relative stability changes occur from the most stable unprotected nanoclusters, planar square (Ir4), and prism (Ir6) to higher energy isomers. The change in the stability order between the two competing protected systems is feasible if the balance between the interaction energy (additive term) and distortion energies (nonadditive terms) compensates for the relative total energies of the unprotected configurations. For all systems, the interaction energy is the main reason responsible for stability alterations, except for 4SO/Ir4, where the main contribution is from a small penalty due to Ir4 distortions upon adsorption, and for 4NO/Ir4, where the energetic effects from the adsorption do not overcome the difference between the binding energies of the unprotected nanoclusters. Finally, from energy decomposition and Hirshfeld charge analysis, we find a predominant covalent nature of the physical contributions in mOX···Irn interactions with a cationic core (Irn) and an anionic shell (XO coverage).

11.
Chem Biodivers ; 18(6): e2100052, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33905595

ABSTRACT

In this study, the trypomastigotes of a Y strain of Trypanosoma cruzi were inoculated intraperitoneally into male BALB/c mice weighing approximately 25 g each, which were divided into groups for evaluation of the trypanocidal activity. For the treatment of experimental groups, encapsulated and unencapsulated (-)-cubebin, Benznidazole, and two groups as negative controls were used. The encapsulated (-)-cubebin showed a 68.1 % encapsulation efficiency. The parasitemia peak of substances remained around the 9th day after the observed reduction in the number of circulating trypomastigotes. The encapsulated (-)-cubebin and (-)-cubebin unloaded showed a decrease of 61.3 % and 58.5 % in the number of parasites as compared to the negative control, respectively. Moreover, animals treated with encapsulated (-)-cubebin had a higher survival time as compared to the other groups. In conclusion, the results obtained were more promising for encapsulated (-)-cubebin as compared to unloaded particles.


Subject(s)
Lignans/pharmacology , Microspheres , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Capsules , Injections, Intraperitoneal , Lignans/administration & dosage , Lignans/chemistry , Male , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Parasitic Sensitivity Tests , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/chemistry
12.
Dalton Trans ; 49(48): 17457-17471, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33216076

ABSTRACT

This perspective focuses on the crucial role that energy decomposition schemes play in elucidating the physical nature of non-covalent interactions in supramolecular systems, particularly from the point of view of host-guest systems stabilized by non-covalent interactions, which are fundamental to molecular recognition. The findings reported here reveal the robustness and practical application of methods such as EDA-NOCV in rationalizing molecular recognition situations in systems such as calixarenes, cyclophanes and other box-shaped hosts, capable of incorporating different chemical species as anions and PAHs. We expect that the discussed cases in this perspective can be viewed as an initial assessment for the multidimensional nature of the weak interactions underlying supramolecular aggregations, which can be recognized in a plethora of different structures constantly synthesized and characterized by chemists around the world.

13.
Dalton Trans ; 49(46): 16762-16771, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33166376

ABSTRACT

The synthesis and characterization of heteromultimetallic complexes has been one of the biggest challenges faced by inorganic chemists in the last few years. Here, the physical nature behind the relative stability of tri-heteronuclear complexes, involving the [M(PR3)]+ (M = Au(i), Ag(i) and Cu(i); and R = Ph and H) cation bridged by the [Fe(CO)4]2- anion, at the relativistic DFT-D3 level of theory is presented. Although the synthetic route to afford the [Fe(CO)4(AuPPh3)2] complex has been known for a long time, information about its copper and silver counterparts is scarce. The bonding situation is addressed via Kohn-Sham molecular orbitals coupled with a canonical energy decomposition analysis as the primary technique. The results show that complexes whose metal portion M-Fe-M is bent are more stable than linear ones. This stems from the dispersive interactions between the phenyl groups, but this also supports the presence of aurophilic d10-d10 interactions. The bonding between the [Fe(CO)4]2- and [Au-PPh3]+ fragments has a chiefly electrostatic character, but orbital interactions also represent a non-negligible role, as evidenced by the presence of : (i) σ-donation from the iron-carbonyl groups to the metal-phosphorus fragment; (ii) small π-donation from the metal to the iron center; and (iii) inner fragment polarization. The description of the metal-metal bonding situation in these complexes provides valuable information, useful to guide the synthesis of unprecedented multimetallic complexes containing coinage metals and other transition metals.

14.
J Phys Chem A ; 124(30): 6186-6192, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32640791

ABSTRACT

The nitric oxide (NO) molecule is directly related to important physiological and physiopathological processes. Ruthenium tetraammine nitrosyl complexes can release NO from the [RuIINO+]3+/[RuIINO0]2+ reduction potential. Experimentally, well established is the practice of determining the redox potential with relation to a reference redox pair. However, there is no agreement on the best methodology that allows the minimization of uncertainties, both experimental and theoretical results. Here, the reduction potential relative to a reference redox pair is obtained from calculated absolute potentials for the target complex: trans-[Ru(NO)(L)(NH3)4]3+/2+ and reference pair: [Ru(bpy)3]3+/2+. The correlation between the calculated and experimental reduction potentials strongly depend on the DFT functional chosen. The best results were obtained with the GGA functional BP86, which showed deviations lower than 200 mV. The assignment of explicit solvent, in addition to continuum solvent influence, also appears as a relevant factor.

15.
Dalton Trans ; 49(19): 6407-6417, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32352455

ABSTRACT

Nickel nanoclusters are very promising for catalysis-related applications, especially involving chemical reactions with polluting molecules, such as carbon, nitrogen, and sulfur monoxides, which are directly or indirectly involved in serious environmental pollution problems. Therefore, it is of utmost importance to improve the understanding of the interaction between Ni nanoclusters and diatomic molecules, such as CO, NO, and SO, to provide insights into real subnano catalysts. Thus, here, we report an ab initio investigation based on density functional theory calculations within van der Waals D3 corrections to investigate the adsorption properties of CO, NO, and SO on Ni nanoclusters. From energetic and electronic criteria applied to Nin nanoclusters (n = 2-15), we selected Ni6 (octahedron) and Ni10 (triangular pyramid) nanoclusters as supports. According to our analyses, the molecular adsorption increases the stability of Ni nanoclusters, especially for Ni6 systems. The interaction intensity is larger for SO than for NO and CO in adsorbed systems, and the strong OS-Ni interaction is responsible for the well-known sulfur poisoning on transition-metal systems. The lowest energy adsorption sites are onefold for CO/Ni6, NO/Ni6, and CO/Ni10; twofold for NO/Ni10; and threefold for SO/Ni6 and CO/Ni10, where CO and NO molecules sustain linear and perpendicular geometries, while SO geometry changes to a bent configuration resulting from a sideways adsorption. The equilibrium bond lengths of the molecules expand upon adsorption, from 0.9% (NO/Ni6/10) to 11.3% (SO/Ni6/10), consequently, the internal molecular bond strengths decrease, since there is a reduction in the molecular stretching frequencies. This result occurs most strongly for SO followed by NO and CO systems, which was confirmed by an estimation of the energetic contribution of the distortion after the adsorption process. Thus, the strong S-Ni interaction, given by SO chemisorption on hollow sites with a sideways interaction, implies an energetic decrease and, consequently, a part of the energy gained from the SO-Ni interaction is from the SO and nanocluster distortions. Ultimately, using the energy decomposition analysis (from SAPT0) for XO/Ni6 systems, we improved the understanding of the CO and NO (SO) singlet (doublet) spin multiplicities' interaction with Ni6 nanoclusters.

16.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8699, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31845428

ABSTRACT

RATIONALE: Although monoketone curcuminoids (MKCs) have been largely investigated due to their biological activities, data on the gas-phase fragmentation reactions of protonated MKCs under collision-induced dissociation (CID) conditions are still scarce. Here, we combined electrospray ionization tandem mass spectrometry (ESI-MS/MS) data, multiple-stage mass spectrometry (MSn ), deuterium exchange experiments, accurate-mass data, and thermochemical data estimated by computational chemistry to elucidate and to rationalize the fragmentation pathways of eleven synthetic MKCs. METHODS: The MKCs were synthesized by Claisen-Schmidt condensation under basic (1-9) or acidic (10-11) conditions. ESI-CID-MS/MS analyses and deuterium-exchange experiments were carried out on a triple quadrupole mass spectrometer. MSn analyses on an ion trap mass spectrometer helped to elucidate the fragmentation pathways. Accurate-mass data and thermochemical data, obtained at the B3LYP/6-31+G(d,p) level of theory, were used to support the ion structures. RESULTS: The most intense product ions were the benzyl ions ([C7 H2 R1 R2 R3 R4 R5 ]+ ) and the acylium ions ([M + H - C8 H3 R1 R2 R3 R4 R5 ]+ ), which originated directly from the precursor ion as a result of two competitive hydrogen rearrangements. Product ions [M + H - H2 O]+ and [M + H - C6 HR1 R2 R3 R4 R5 ]+ , which are formed after Nazarov cyclization, were also common to all the analyzed compounds. In addition, •Br and •Cl eliminations were diagnostic for the presence of these halogen atoms at the aromatic ring, whereas •CH3 eliminations were useful to identify the methyl and methoxy groups attached to this same ring. Nazarov cyclization in the gas phase occurred for all the investigated MKCs and did not depend on the presence of the hydroxyl group at the aromatic ring. However, the presence and the position of a hydroxyl group at the aromatic rings played a key role in the Nazarov cyclization mechanism. CONCLUSIONS: Our results reinforce some aspects of the fragmentation pathways previously published for 1,5-bis-(2-methoxyphenyl)-1,4-pentadien-3-one and 1,5-bis-(2-hydroxyphenyl)-1,4-pentadien-3-one. The alternative fragmentation mechanism proposed herein can explain the fragmentation of a wider diversity of monoketone curcuminoids.


Subject(s)
Diarylheptanoids/chemistry , Chemical Fractionation , Deuterium Exchange Measurement , Diarylheptanoids/chemical synthesis , Ions/chemistry , Molecular Structure , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
17.
Dalton Trans ; 49(2): 492-503, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31834332

ABSTRACT

Knowledge about the appropriate indicators to point out the best components in a catalytic process is a basic prerequisite for obtaining insights into optimized reactions as, for example, in the chemical vapour deposition method, which enables the growth of carbon nanotubes. In this work, we report a density functional theory study of 13-atom transition-metal nanoclusters interacting with (5,0) zigzag and (3,3) armchair carbon nanotube fragments, considering all transition-metal species from the periodic table as possible candidates for the chemical vapour deposition method. The icosahedral configuration was found to be a good model to simulate the seed of nucleation in the case of the short carbon nanotube fragments that are initially formed during the growth process. From full geometric optimizations, without any constraints, we found that the energetic and structural nanocluster properties change as a function of the occupation of the bonding and anti-bonding d-states. The center of gravity of the occupied d-states for nanoclusters is found to be a good indicator to reveal the best candidates for the interaction with the carbon nanotubes, namely, Sc-Cu, Y-Nb, Pd, Lu, Hf, and Pt. The interaction between all transition-metal nanoclusters with both armchair and zigzag segments is favorable in terms of the adhesion energy, where the adhesion is larger for systems with smaller occupation of the d-states. The bond strength is more pronounced for systems with zigzag fragments than those with armchair fragments, which is confirmed by the smaller average bond length between the metal atoms of the nanocluster and the C atoms of the zigzag segment. Our prediction about the best 13-atom transition-metal candidates is reinforced by the linear relationship between the adhesion energy and the center of gravity of the occupied d-states. Thus, the adhesion energy presents increased intensity for the interaction between carbon nanotube fragments and nanoclusters in relation to the smaller occupation of the d-states. Consequently, our model is able to provide a good descriptor for indicating the best 13-atom transition-metal candidates in the chemical vapour deposition process.

18.
J Mol Model ; 25(1): 11, 2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30607601

ABSTRACT

Ruthenophanes have been recognized as potential candidates to the design of electrically conducting polymers, particularly due to their electrochemical, structural, and spectroscopic properties. The comprehension and rationalization of the metal-ligand interaction is fundamental to pave the way for future applications as the design of new conducting materials. For that reason, this investigation sheds light on the electronic details behind the cation-π interactions present in ruthenophanes by using [Ru(η6-C16H16)(NH3)3]2+ as a model. Zeroth-order symmetry-adapted perturbation theory (SAPT0) shows the interaction Ru(II)-[2.2]paracyclophane with a predominant covalent character. However, the hapticity analysis of [2.2]paracyclophane shows only two predominantly covalent Ru-C bonds, as highlighted by the total energy density, H(r), in the bond critical point (BCP) obtained from quantum theory of atoms in molecules (QTAIM) method, and by second-order stabilization energy, ΔE(2), related to the processes: π C-C → dσ or dπ Ru, achieved in the natural bond orbital (NBO) method. The other two Ru-C chemical bonds show a largely electrostatic character, as can be visualized from the delocalization index, DI, between the electron basins in the electron localization function (ELF) method. Remarkably, the interacting quantum atoms (IQA) method showed practically the same value of the total interaction energy, E[Formula: see text], between Ru and these C atoms and, then, corroborates the hapticity four of the ligand: [2.2]paracyclophane. Source function distribution presents a correlation with the electronic interactions between different groups in [Ru(η6-C16H16)(NH3)3]2+. Graphical Abstract The nature of the interactions between [Ru(NH3)3]2+ and [2.2]paracyclophane in [Ru(η6-C16H16)(NH3)3]2+ was investigated with different methods of energy decomposition and electron density analysis. This interaction has a predominantly covalent character. It was possible to observe that some Ru-C interactions have a larger covalent character, in contrast for other that are mainly ionic.

19.
ChemistryOpen ; 6(3): 410-416, 2017 06.
Article in English | MEDLINE | ID: mdl-28638774

ABSTRACT

We have analyzed structure, stability, and Ru-NO bonding of the trans-[RuCl(NO)(NH3)4]2+ complex by using relativistic density functional theory. First, we focus on the bond dissociation energies associated with the three canonical dissociation modes leading to [RuCl(NH3)4]++NO+, [RuCl(NH3)4]2++NO, and [RuCl(NH3)4]3++NO-. The main objective is to understand the Ru-NO+ bonding mechanism in the conceptual framework of Kohn-Sham molecular orbital theory in combination with a quantitative energy decomposition analysis. In our analyses, we have addressed the importance of the synergism between Ru-NO+ σ-donation and π-backdonation as well as the so-called negative trans influence of the Cl- ligand on the Ru-NO bond. For completeness, the Ru-NO+ bonding mechanism is compared with that of the corresponding Ru-CO bond.

20.
J Mol Model ; 22(11): 276, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27783233

ABSTRACT

In this computational study the interaction of NO., NO+, and NO- with H2O: [NO--H2O]., 1 ., [NO--H2O]+, 1 + , and [NO--H2O]-, 1 - was analysed. The optimized geometries indicate that the relative position of NO and H2O depends on the total charge: (ON.--H-OH), (NO---H-OH), and (ON+--OH2). Moreover, atomic spin density along with frontier molecular orbitals help to identify the preferred reduction or oxidation sites on the nitric oxide. Thus, quantum theory of atoms in molecules (QTAIM), electron localization function (ELF), and natural bond-bond polarizability (NBBP) methods aid to quantify the electron delocalization level between NO and H2O, 1 + > 1 . > 1 - , and show the predominantly ionic, and covalent character to inter-molecular, and intra-molecular chemical bonds, respectively. Furthermore, the natural bond orbital (NBO) and localized molecular orbital energy decomposition analysis (LMO-EDA) methods enable energy analyses of the interaction between NO and H2O in the complexes 1 ., 1 + , and 1 - . Where, the first method showed that the interaction between the natural bond orbitals in 1 - is more favorable, than in 1 + , and less in 1 ., however, the second method designates that the total interaction energy is lower for 1 + in relation to 1 - and 1 ., due mainly to the electrostatic component. As a final point, analysis of the electrostatic potential surfaces provides a clear and direct explanation for the relative position of the monomers. It also shows that the predominant Coulombic attraction between H2O and the charged NO+, and NO- compounds will be stronger in relation to the neutral NO.. Graphical abstract ᅟ.

SELECTION OF CITATIONS
SEARCH DETAIL
...