Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
J Med Entomol ; 58(2): 634-645, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33710316

ABSTRACT

We investigated by scanning electron microscopy the morphology, distribution, and abundance of antennal sensilla of females Phlebotomus duboscqi sand fly, an important vector of zoonotic cutaneous leishmaniasis at Afrotropical region. Thirteen well-differentiated sensilla were identified, among six types of cuticular sensilla. The probable function of these sensillary types is discussed in relation to their external structure and distribution. Five sensillary types were classified as olfactory sensilla, as they have specific morphological characters of sensilla with this function. Number and distribution of sensilla significantly differed between antennal segments. The results of the present work, besides corroborating in the expansion of the morphological and ultrastructural knowledge of P. duboscqi, can foment future electrophysiological studies for the development of volatile semiochemicals, to be used as attractants in traps for monitoring and selective vector control of this sand fly.


Subject(s)
Phlebotomus/ultrastructure , Sensilla/ultrastructure , Animals , Female , Phlebotomus/physiology , Sensilla/physiology
3.
J Med Entomol ; 57(6): 1722-1734, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32761144

ABSTRACT

The antennal sensilla and the antenna of females Nyssomyia intermedia, one of the main vectors of American cutaneous leishmaniasis, were studied by scanning electron microscopy. The main goal was to characterize the quantity, typology, and topography of the sensilla with particular attention to the olfactory types. The insects were captured in the city of Corte de Pedra, State of Bahia, Brazil, by CDC-type light traps and raised in a laboratory as a new colony. Fourteen well-differentiated sensilla were identified, among six cuticular types: trichoidea, campaniformia, squamiformia, basiconica, chaetica, and coeloconica. Of these, six sensilla were classified as olfactory sensilla due to their specific morphological features. Smaller noninnervated pilosities of microtrichiae type were also evidenced by covering all antennal segments. The antennal segments differ in shapes and sizes, and the amount and distribution of types and subtypes of sensilla. This study may foment future taxonomic and phylogenetic analysis for a better evolutionary understanding of the sand flies. Besides, it may assist the targeting of future electrophysiological studies by Single Sensillum Recording, and aim to develop alternative measures of monitoring and control of this vector.


Subject(s)
Arthropod Antennae/ultrastructure , Insect Vectors/ultrastructure , Psychodidae/ultrastructure , Animals , Brazil , Female , Leishmaniasis, Cutaneous , Microscopy, Electron, Scanning , Sensilla/ultrastructure
4.
PLoS One ; 14(9): e0219523, 2019.
Article in English | MEDLINE | ID: mdl-31479460

ABSTRACT

Whole mitogenome sequences (mtDNA) have been exploited for insect ecology studies, using them as molecular markers to reconstruct phylogenies, or to infer phylogeographic relationships and gene flow. Recent Anopheles phylogenomic studies have provided information regarding the time of deep lineage divergences within the genus. Here we report the complete 15,393 bp mtDNA sequences of Anopheles aquasalis, a Neotropical human malaria vector. When comparing its structure and base composition with other relevant and available anopheline mitogenomes, high similarity and conserved genomic features were observed. Furthermore, 22 mtDNA sequences comprising anopheline and Dipteran sibling species were analyzed to reconstruct phylogenies and estimate dates of divergence between taxa. Phylogenetic analysis using complete mtDNA sequences suggests that A. aquasalis diverged from the Anopheles albitarsis complex ~28 million years ago (MYA), and ~38 MYA from Anopheles darlingi. Bayesian analysis suggests that the most recent ancestor of Nyssorhynchus and Anopheles + Cellia was extant ~83 MYA, corroborating current estimates of ~79-100 MYA. Additional sampling and publication of African, Asian, and North American anopheline mitogenomes would improve the resolution of the Anopheles phylogeny and clarify early continental dispersal routes.


Subject(s)
Anopheles/classification , Anopheles/genetics , Genome, Mitochondrial , Genomics , Phylogeny , Phylogeography , Animals , Base Composition , Computational Biology/methods , Evolution, Molecular , Genomics/methods , Humans , Molecular Sequence Annotation , Mosquito Vectors/classification , Mosquito Vectors/genetics , Sequence Analysis, DNA , Whole Genome Sequencing
5.
J Med Entomol ; 56(6): 1636-1649, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31321415

ABSTRACT

The mosquito gut is divided into foregut, midgut, and hindgut. The midgut functions in storage and digestion of the bloodmeal. This study used light, scanning (SEM), and transmission (TEM) electron microscopy to analyze in detail the microanatomy and morphology of the midgut of nonblood-fed Anopheles aquasalis females. The midgut epithelium is a monolayer of columnar epithelial cells that is composed of two populations: microvillar epithelial cells and basal cells. The microvillar epithelial cells can be further subdivided into light and dark cells, based on their affinities to toluidine blue and their electron density. FITC-labeling of the anterior midgut and posterior midgut with lectins resulted in different fluorescence intensities, indicating differences in carbohydrate residues. SEM revealed a complex muscle network composed of circular and longitudinal fibers that surround the entire midgut. In summary, the use of a diverse set of morphological methods revealed the general microanatomy of the midgut and associated tissues of An. aquasalis, which is a major vector of Plasmodium spp. (Haemosporida: Plasmodiidae) in America.


Subject(s)
Anopheles/anatomy & histology , Mosquito Vectors/anatomy & histology , Animals , Anopheles/ultrastructure , Digestive System/anatomy & histology , Digestive System/ultrastructure , Female , Malaria/transmission , Microscopy , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Mosquito Vectors/ultrastructure
6.
J Med Entomol ; 56(2): 421-431, 2019 02 25.
Article in English | MEDLINE | ID: mdl-30508123

ABSTRACT

The mosquito midgut is divided into two regions named anterior midgut (AMG) and posterior midgut (PMG). The midgut expands intensely after the blood ingestion to accommodate a large amount of ingested food. To efficiently support the bloodmeal-induced changes, the organization of the visceral muscle fibers has significant adjustments. This study describes the spatial organization of the Anopheles aquasalis (Culicidae, Anophelinae) midgut muscle network and morphological changes after bloodmeal ingestion and infection with Plasmodium vivax (Haemosporida, Plasmodiidae). The midgut muscle network is composed of two types of fibers: longitudinal and circular. The two types of muscle fibers are composed of thick and thin filaments, similar to myosin and actin, respectively. Invagination of sarcoplasm membrane forms the T-system tubules. Sarcoplasmic reticulum cisternae have been observed in association with these invaginations. At different times after the bloodmeal, the fibers in the AMG are not modified. A remarkable dilation characterizes the transitional area between the AMG and the PMG. In the PMG surface, after the completion of bloodmeal ingestion, the stretched muscle fibers became discontinued. At 72 h after bloodmeal digestion, it is possible to observe the presence of disorganized muscle fibers in the midgut regions. The Plasmodium oocyst development along the basal layer of the midgut does not have a significant role in the visceral musculature distribution. This study provides features of the visceral musculature at different blood feeding times of An. aquasalis and shows important changes in midgut topography including when the mosquitoes are infected with P. vivax.


Subject(s)
Anopheles/ultrastructure , Mosquito Vectors/ultrastructure , Animals , Anopheles/parasitology , Anopheles/physiology , Female , Gastrointestinal Tract/physiology , Gastrointestinal Tract/ultrastructure , Mosquito Vectors/parasitology , Mosquito Vectors/physiology , Muscles/physiology , Muscles/ultrastructure , Plasmodium vivax/physiology
7.
PLoS Negl Trop Dis ; 12(2): e0006221, 2018 02.
Article in English | MEDLINE | ID: mdl-29444080

ABSTRACT

BACKGROUND: The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America. METHODS: To determine the IVM susceptibility against P. vivax in An. aquasalis and An. darlingi, ivermectin were mixed in P. vivax infected blood: (1) Powdered IVM at four concentrations (0, 5, 10, 20 or 40 ng/mL). (2) Plasma (0 hours, 4 hours, 1 day, 5, 10 and 14 days) was collected from healthy volunteers after to administer a single oral dose of IVM (200 µg/kg) (3) Mosquitoes infected with P. vivax and after 4 days was provided with IVM plasma collected 4 hours post-treatment (4) P. vivax-infected patients were treated with various combinations of IVM, chloroquine, and primaquine and plasma or whole blood was collected at 4 hours. Seven days after the infective blood meal, mosquitoes were dissected to evaluate oocyst presence. Additionally, the ex vivo effects of IVM against asexual blood-stage P. vivax was evaluated. RESULTS: IVM significantly reduced the prevalence of An. aquasalis that developed oocysts in 10 to 40 ng/mL pIVM concentrations and plasma 4 hours, 1 day and 5 days. In An. darlingi to 4 hours and 1 day. The An. aquasalis mortality was expressively increased in pIVM (40ng/mL) and plasma 4 hours, 1, 5 10 and 14 days post-intake drug and in An. darlingi only to 4 hours and 1 day. The double fed meal with mIVM by the mosquitoes has a considerable impact on the proportion of infected mosquitoes for 7 days post-feeding. The oocyst infection prevalence and intensity were notably reduced when mosquitoes ingested blood from P. vivax patients that ingested IVM+CQ, PQ+CQ and IVM+PQ+CQ. P. vivax asexual development was considerably inhibited by mIVM at four-fold dilutions. CONCLUSION: In conclusion, whole blood spiked with IVM reduced the infection rate of P. vivax in An. aquasalis and An. darlingi, and increased the mortality of mosquitoes. Plasma from healthy volunteers after IVM administration affect asexual P. vivax development. These findings support that ivermectin may be used to decrease P. vivax transmission.


Subject(s)
Anopheles/drug effects , Insect Vectors/drug effects , Ivermectin/pharmacology , Malaria/transmission , Plasmodium vivax/drug effects , Animals , Anopheles/parasitology , Brazil , Chloroquine/pharmacology , Dose-Response Relationship, Drug , Drug Combinations , Female , Humans , Insect Vectors/parasitology , Ivermectin/administration & dosage , Ivermectin/blood , Ivermectin/metabolism , Malaria/blood , Oocysts/drug effects , Oocysts/pathogenicity , Primaquine/pharmacology
8.
PLoS One ; 13(1): e0190352, 2018.
Article in English | MEDLINE | ID: mdl-29293631

ABSTRACT

Zika is a re-emerging infection that has been considered a major threat to global public health. Currently at least 100 countries are at risk of Zika virus (ZIKV) transmission. Aedes aegypti is the main mosquito vector in the Americas. This vector is exposed to, and interacts symbiotically with a variety of microorganisms in its environment, which may result in the formation of a lifetime association. Here, the unknown effect that ZIKV exerts on the dynamic bacterial community harbored by this mosquito vector was investigated using a metagenomic analysis of its microbiota. Groups of Ae. aegypti were experimentally fed on sugar, blood and blood mixed with ZIKV, and held for 3 to 7 days after blood meal and eggs development respectively. The infected groups were processed by qPCR to confirm the presence of ZIKV. All groups were analyzed by metagenomics (Illumina Hiseq Sequencing) and 16S rRNA amplicon sequences were obtained to create bacterial taxonomic profiles. A core microbiota and exclusive bacterial taxa were identified that incorporate 50.5% of the predicted reads from the dataset, with 40 Gram-negative and 9 Gram-positive families. To address how ZIKV invasion may disturb the ecological balance of the Ae. aegypti microbiota, a CCA analysis coupled with an explanatory matrix was performed to support the biological interpretation of shifts in bacterial signatures. Two f-OTUs appeared as potential biomarkers of ZIKV infection: Rhodobacteraceae and Desulfuromonadaceae. Coincidentally, both f-OTUs were exclusively present in the ZIKV- infected blood-fed and ZIKV- infected gravid groups. In conclusion, this study shows that bacterial symbionts act as biomarkers of the insect physiological states and how they respond as a community when ZIKV invades Ae. aegypti. Basic knowledge of local haematophagous vectors and their associated microbiota is relevant when addressing transmission of vector-borne infectious diseases in their regional surroundings.


Subject(s)
Aedes/microbiology , Bacteria/classification , Biodiversity , Metagenomics , Zika Virus Infection/microbiology , Aedes/virology , Animals , Bacteria/genetics , High-Throughput Nucleotide Sequencing , Mosquito Vectors , RNA, Ribosomal, 16S/genetics
9.
PLoS One ; 11(12): e0167178, 2016.
Article in English | MEDLINE | ID: mdl-27911924

ABSTRACT

Malaria is endemic in the American continent and the Amazonian rainforest is the region with the highest risk of transmission. However, the lack of suitable experimental models to infect malaria vectors from the Americas has limited the progress to understand the biology of transmission in this region. Anopheles aquasalis, a major vector in coastal areas of South America, was found to be highly refractory to infection with two strains of Plasmodium falciparum (NF54 and 7G8) and with Plasmodium berghei (mouse malaria), even when the microbiota was eliminated with antibiotics and oxidative stress was reduced with uric acid. In contrast, An. aquasalis females treated with antibiotics and uric acid are susceptible to infection with a second murine parasite, Plasmodium yoelii nigeriensis N67 (PyN67). Anopheles albimanus, one of the main malaria vectors in Central America, Southern Mexico and the Caribbean, was more susceptible to infection with PyN67 than An. aquasalis, even in the absence of any pre-treatment, but was still less susceptible than Anopheles stephensi. Disruption of the complement-like system in An. albimanus significantly enhanced PyN67 infection, indicating that the mosquito immune system is mounting effective antiplasmodial responses. PyN67 has the ability to infect a broad range of anophelines and is an excellent model to study malaria transmission by South American vectors.


Subject(s)
Anopheles/parasitology , Malaria/transmission , Plasmodium yoelii , Animals , Central America , Disease Models, Animal , Female , Mexico , Mice, Inbred BALB C
10.
Malar J ; 15(1): 394, 2016 Aug 02.
Article in English | MEDLINE | ID: mdl-27480269

ABSTRACT

BACKGROUND: Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. RESULTS: Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. CONCLUSIONS: This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.


Subject(s)
Oocysts/parasitology , Oocysts/ultrastructure , Plasmodium/physiology , Plasmodium/ultrastructure , Sporozoites/physiology , Sporozoites/ultrastructure , Animals , Birds , Female , Humans , Life Cycle Stages , Mice , Microscopy, Electron, Scanning
11.
Mem Inst Oswaldo Cruz ; 110(1): 23-47, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25742262

ABSTRACT

In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Anopheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.


Subject(s)
Anopheles/parasitology , Insect Vectors/parasitology , Malaria/transmission , Plasmodium/classification , Animals , Anopheles/classification , Anopheles/genetics , Anopheles/immunology , Anopheles/ultrastructure , Disease Models, Animal , Insect Vectors/classification , Insect Vectors/genetics , Insect Vectors/immunology , Insect Vectors/ultrastructure , Malaria/immunology , Mosquito Control , Parasite Load , Rainforest
12.
Mem. Inst. Oswaldo Cruz ; 110(1): 23-47, 03/02/2015. graf
Article in English | LILACS | ID: lil-741609

ABSTRACT

In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Amoxicillin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Drugs, Chinese Herbal/administration & dosage , Helicobacter Infections/drug therapy , Helicobacter pylori/drug effects , Omeprazole/analogs & derivatives , Peptic Ulcer/drug therapy , Anti-Ulcer Agents/administration & dosage , Clarithromycin/administration & dosage , Double-Blind Method , Drug Therapy, Combination , Follow-Up Studies , Helicobacter Infections/pathology , Lansoprazole , Omeprazole/administration & dosage , Prospective Studies , Peptic Ulcer/microbiology , Peptic Ulcer/pathology , Recurrence , Wound Healing/drug effects
13.
PLoS Negl Trop Dis ; 5(11): e1317, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22069502

ABSTRACT

Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the transcription factor Signal Transducers and Activators of Transcription (STAT), the regulatory Protein Inhibitors of Activated STAT (PIAS) and the Nitric Oxide Synthase enzyme (NOS) were characterized. Expression of STAT and PIAS was higher in males than females and in eggs and first instar larvae when compared to larvae and pupae. RNA levels for STAT and PIAS increased 24 and 36 hours (h) after P. vivax challenge. NOS transcription increased 36 h post infection (hpi) while this protein was already detected in some midgut epithelial cells 24 hpi. Imunocytochemistry experiments using specific antibodies showed that in non-infected insects STAT and PIAS were found mostly in the fat body, while in infected mosquitoes the proteins were found in other body tissues. The knockdown of STAT by RNAi increased the number of oocysts in the midgut of A. aquasalis. This is the first clear evidence for the involvement of a specific immune pathway in the interaction of the Brazilian malaria vector A. aquasalis with P. vivax, delineating a potential target for the future development of disease controlling strategies.


Subject(s)
Anopheles/immunology , Anopheles/parasitology , Nitric Oxide Synthase/biosynthesis , Plasmodium vivax/immunology , Plasmodium vivax/isolation & purification , Protein Inhibitors of Activated STAT/biosynthesis , STAT Transcription Factors/biosynthesis , Animals , Brazil , Female , Gene Expression Profiling , Gene Knockdown Techniques , Immunohistochemistry , Male , Molecular Sequence Data , Nitric Oxide Synthase/immunology , Protein Inhibitors of Activated STAT/immunology , STAT Transcription Factors/immunology , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...