Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(27): 11434-11456, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37378458

ABSTRACT

In the past decades, neuromorphic computing has attracted the interest of the scientific community due to its potential to circumvent the von Neumann bottleneck. Organic materials, owing to their fine tunablility and their ability to be used in multilevel memories, represent a promising class of materials to fabricate neuromorphic devices with the key requirement of operation with synaptic weight. In this review, recent studies of organic multilevel memory are presented. The operating principles and the latest achievements obtained with devices exploiting the main approaches to reach multilevel operation are discussed, with emphasis on organic devices using floating gates, ferroelectric materials, polymer electrets and photochromic molecules. The latest results obtained using organic multilevel memories for neuromorphic circuits are explored and the major advantages and drawbacks of the use of organic materials for neuromorphic applications are discussed.

2.
Chem Commun (Camb) ; 59(22): 3160-3174, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36805573

ABSTRACT

Organic thermoelectricity is a blooming field of research that employs organic (semi)conductors to recycle waste heat through its partial conversion to electrical power. Such a conversion occurs by means of organic thermoelectric generator (OTEG) devices. The recent process on the synthesis of novel materials and on the understanding of doping mechanisms to increase conductivity has tremendously narrowed the gap between laboratory research and their application in actual applications. This Feature Article intends to highlight the impressive progress in materials and fabrication techniques for OTEGs made in recent years.

3.
Nat Commun ; 13(1): 1844, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35383178

ABSTRACT

The capability to finely tailor material thickness with simultaneous atomic precision and non-invasivity would be useful for constructing quantum platforms and post-Moore microelectronics. However, it remains challenging to attain synchronized controls over tailoring selectivity and precision. Here we report a protocol that allows for non-invasive and atomically digital etching of van der Waals transition-metal dichalcogenides through selective alloying via low-temperature thermal diffusion and subsequent wet etching. The mechanism of selective alloying between sacrifice metal atoms and defective or pristine dichalcogenides is analyzed with high-resolution scanning transmission electron microscopy. Also, the non-invasive nature and atomic level precision of our etching technique are corroborated by consistent spectral, crystallographic, and electrical characterization measurements. The low-temperature charge mobility of as-etched MoS2 reaches up to 1200 cm2 V-1s-1, comparable to that of exfoliated pristine counterparts. The entire protocol represents a highly precise and non-invasive tailoring route for material manipulation.

4.
ACS Appl Mater Interfaces ; 13(22): 26152-26160, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-34028250

ABSTRACT

Analogous to the case of classical metal oxide semiconductor field-effect transistors, transport properties of graphene-based devices are determined by scattering from adventitious charged impurities that are invariably present. The presence of charged impurities renders experimental graphene samples "extrinsic" in that their electrical performances also depend on the environment in which graphene operates. While the role of such an extrinsic disorder component has been studied for conventional charge transport in graphene, its impact on the magnetotransport remains unexplored. Here, we show that single-layer graphene transistors with a low density of extrinsic disorder feature a larger magnetoresistance (MR) than those with a high density. Importantly, in gated single-layer devices with a low density of charged impurities, we find that MR peaks at gate voltage values far from the charge neutrality point not only at a low temperature but also at room temperature; in particular, MR approaches 800% at room temperature and 1400% at 50 K in such devices. In addition, dynamic measurements of MR on devices with a low degree of extrinsic disorder lead to stable and reliable single-layer graphene magnetosensors endowed with an ultralow power consumption of 2.5 nW. Our work indicates that the initial value of the minimum conductivity σ0 at room temperature along with carrier mobility must be looked at to select the most promising devices for magnetosensing.

5.
Adv Mater ; 33(14): e2007965, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33656201

ABSTRACT

Organic transistors are key elements for flexible, wearable, and biocompatible logic applications. Multiresponsivity is highly sought-after in organic electronics to enable sophisticated operations and functions. Such a challenge can be pursued by integrating more components in a single device, each one responding to a specific external stimulus. Here, the first multiresponsive organic device based on a photochromic-ferroelectric organic field-effect transistor, which is capable of operating as nonvolatile memory with 11 bit memory storage capacity in a single device, is reported. The memory elements can be written and erased independently by means of light or an electric field, with accurate control over the readout signal, excellent repeatability, fast response, and high retention time. Such a proof of concept paves the way toward enhanced functional complexity in optoelectronics via the interfacing of multiple components in a single device, in a fully integrated low-cost technology compatible with flexible substrates.

6.
Adv Mater ; 33(13): e2007870, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33629772

ABSTRACT

Charge transport in organic semiconductors is notoriously extremely sensitive to the presence of disorder, both internal and external (i.e., related to interactions with the dielectric layer), especially for n-type materials. Internal dynamic disorder stems from large thermal fluctuations both in intermolecular transfer integrals and (molecular) site energies in weakly interacting van der Waals solids and sources transient localization of the charge carriers. The molecular vibrations that drive transient localization typically operate at low-frequency (

7.
Chem Soc Rev ; 49(21): 7627-7670, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33016288

ABSTRACT

While organic materials have demonstrated industry-leading performances in a wide array of electronic applications (including OLEDs and OPVs), their use for integration into electronic circuits has been so far limited, in spite of their potential for portable, flexible, light-weight, low-cost applications. However, recent advances in organic (semi)conductors and novel designs in organic field-effect transistors and hybrid systems have reaffirmed the potential of organic logic circuits. This review article provides an overview of organic-based inverter operation and considers all aspects of such circuits including their active layer, processing methods, hybrid organic/inorganic inverters, novel architectures and potential applications.

8.
J Am Chem Soc ; 142(25): 11050-11059, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32484344

ABSTRACT

The integration of photochromic molecules into semiconducting polymer matrices via blending has recently attracted a great deal of attention, as it provides the means to reversibly modulate the output signal of electronic devices by using light as a remote control. However, the structural and electronic interactions between photochromic molecules and semiconducting polymers are far from being fully understood. Here we perform a comparative investigation by combining two photochromic diarylethene moieties possessing similar energy levels yet different propensity to aggregate with five prototypical polymer semiconductors exhibiting different energy levels and structural order, ranging from amorphous to semicrystalline. Our in-depth photochemical, structural, morphological, and electrical characterization reveals that the photoresponsive behavior of thin-film transistors including polymer/diarylethenes blends as the active layer is governed by a complex interplay between the relative position of the energy levels and the polymer matrix microstructure. By matching the energy levels and optimizing the molecular packing, high-performance optically switchable organic thin-film transistors were fabricated. These findings represent a major step forward in the fabrication of light-responsive organic devices.

9.
ACS Nano ; 14(3): 2956-2965, 2020 03 24.
Article in English | MEDLINE | ID: mdl-32068388

ABSTRACT

Surface-confined synthesis is a promising approach to build complex molecular nanostructures including macrocycles. However, despite the recent advances in on-surface macrocyclization under ultrahigh vacuum, selective synthesis of monodisperse and multicomponent macrocycles remains a challenge. Here, we report on an on-surface formation of [6 + 6] Schiff-base macrocycles via dynamic covalent chemistry. The macrocycles form two-dimensional crystalline domains on the micrometer scale, enabled by dynamic conversion of open-chain oligomers into well-defined ∼3.0 nm hexagonal macrocycles. We further show that by tailoring the length of the alkyl substituents, it is possible to control which of three possible products-oligomers, macrocycles, or polymers-will form at the surface. In situ scanning tunneling microscopy imaging combined with density functional theory calculations and molecular dynamics simulations unravel the synergistic effect of surface confinement and solvent in leading to preferential on-surface macrocyclization.

10.
ACS Nano ; 13(10): 11613-11622, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31509382

ABSTRACT

WSe2 is a layered ambipolar semiconductor enabling hole and electron transport, which renders it a suitable active component for logic circuitry. However, solid-state devices based on single- and bilayer WSe2 typically exhibit unipolar transport and poor electrical performance when conventional SiO2 dielectric and Au electrodes are used. Here, we show that silane-containing functional molecules form ordered monolayers on the top of the WSe2 surface, thereby boosting its electrical performance in single- and bilayer field-effect transistors. In particular, by employing SiO2 dielectric substrates and top Au electrodes, we measure unipolar mobility as high as µh = 150 cm2 V-1 s-1 and µe = 17.9 cm2 V-1 s-1 in WSe2 single-layer devices when ad hoc molecular monolayers are chosen. Additionally, by asymmetric double-side functionalization with two different molecules, we provide opposite polarity to the top and bottom layer of bilayer WSe2, demonstrating nearly balanced ambipolarity at the bilayer limit. Our results indicate that the controlled functionalization of the two sides of the WSe2 mono- and bilayer flakes with highly ordered molecular monolayers offers the possibility to simultaneously achieve energy level engineering and defect functionalization, representing a path toward deterministic control over charge transport in 2D materials.

11.
Adv Mater ; 31(23): e1900599, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30941813

ABSTRACT

The scientific effort toward achieving a full control over the correlation between structure and function in organic and polymer electronics has prompted the use of supramolecular interactions to drive the formation of highly ordered functional assemblies, which have been integrated into real devices. In the resulting field of supramolecular electronics, self-assembly of organic semiconducting materials constitutes a powerful tool to generate low-dimensional and crystalline functional architectures. These include 1D nanostructures (nanoribbons, nanotubes, and nanowires) and 2D molecular crystals with tuneable and unique optical, electronic, and mechanical properties. Optimizing the (opto)electronic properties of organic semiconducting materials is imperative to harness such supramolecular structures as active components for supramolecular electronics. However, their integration in real devices currently represents a significant challenge to the advancement of (opto)electronics. Here, an overview of the unconventional nanofabrication techniques and device configurations to enable supramolecular electronics to become a real technology is provided. A particular focus is put on how single and multiple supramolecular fibers and gels as well as supramolecularly engineered 2D materials can be integrated into novel vertical or horizontal junctions to realize flexible and high-density multifunctional transistors, photodetectors, and memristors, exhibiting a set of new properties and excelling in their performances.

12.
ACS Nano ; 13(2): 2654-2662, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30730697

ABSTRACT

The spatially precise integration of arrays of micropatterned two-dimensional (2D) crystals onto three-dimensionally structured Si/SiO2 substrates represents an attractive, low-cost system-on-chip strategy toward the realization of extended functions in silicon microelectronics. However, the reliable integration of such atomically thin arrays on planar patterned surfaces has proven challenging due to their poor adhesion to underlying substrates, as ruled by weak van der Waals interactions. Here, we report on an integration method utilizing the flexibility of the atomically thin crystals and their physical subsidence in liquids, which enables the reliable fabrication of the micropatterned 2D materials/Si arrays. Our photodiode devices display peak sensitivity as high as 0.35 A/W and external quantum efficiency (EQE) of ∼90%. The nano-subsidence technique represents a viable path to on-chip integration of 2D crystals onto silicon for advanced microelectronics.

13.
Nat Commun ; 9(1): 3689, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30190476

ABSTRACT

The original version of this article incorrectly listed an affiliation of Sara Bonacchi as 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada', instead of the correct 'Present address: Department of Chemical Sciences - University of Padua - Via Francesco Marzolo 1 - 35131 Padova - Italy'. And an affiliation of Emanuele Orgiu was incorrectly listed as 'Present address: Department of Chemical Sciences, University of Padua, Via Francesco Marzolo 1, Padova, 35131, Italy', instead of the correct 'Present address: Institut National de la Recherche Scientifique (INRS), EMT Center, Boulevard Lionel-Boulet, Varennes, QC, J3X 1S2, 1650, Canada'. This has been corrected in both the PDF and HTML versions of the article.

14.
Nat Commun ; 9(1): 2661, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29985413

ABSTRACT

Molecular switches enable the fabrication of multifunctional devices in which an electrical output can be modulated by external stimuli. The working mechanism of these devices is often hard to prove, since the molecular switching events are only indirectly confirmed through electrical characterization, without real-space visualization. Here, we show how photochromic molecules self-assembled on graphene and MoS2 generate atomically precise superlattices in which a light-induced structural reorganization enables precise control over local charge carrier density in high-performance devices. By combining different experimental and theoretical approaches, we achieve exquisite control over events taking place from the molecular level to the device scale. Unique device functionalities are demonstrated, including the use of spatially confined light irradiation to define reversible lateral heterojunctions between areas possessing different doping levels. Molecular assembly and light-induced doping are analogous for graphene and MoS2, demonstrating the generality of our approach to optically manipulate the electrical output of multi-responsive hybrid devices.

15.
Nanotechnology ; 29(36): 365201, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29894980

ABSTRACT

The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert-Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices.

16.
Adv Mater ; 30(28): e1801181, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29782659

ABSTRACT

Self-standing nanostructures are of fundamental interest in materials science and nanoscience and are widely used in (opto-)electronic and photonic devices as well as in micro-electromechanical systems. To date, large-area and self-standing nanoelectrode arrays assembled on flexible substrates have not been reported. Here the fabrication of a hollow nanomesh scaffold on glass and plastic substrates with a large surface area over 1 mm2 and ultralow leakage current density (≈1-10 pA mm-2 @ 2 V) across the empty scaffold is demonstrated. Thanks to the continuous sub-micrometer space formed in between the nanomesh and the bottom electrode, highly crystalline and dendritic domains of 6,13-bis(triisopropylsilylethinyl)pentacene growing within the hollow cavity can be observed. The high degree of order at the supramolecular level leads to efficient charge and exciton transport; the photovoltaic detector supported on flexible polyethylene terephthalate substrates exhibits an ultrafast photoresponse time as short as 8 ns and a signal-to-noise ratio approaching 105 . Such a hollow scaffold holds great potential as a novel device architecture toward flexible (opto-)electronic applications based on self-assembled micro/nanocrystals.

17.
Adv Mater ; 30(18): e1706103, 2018 May.
Article in English | MEDLINE | ID: mdl-29441680

ABSTRACT

van der Waals heterostructures, composed of vertically stacked inorganic 2D materials, represent an ideal platform to demonstrate novel device architectures and to fabricate on-demand materials. The incorporation of organic molecules within these systems holds an immense potential, since, while nature offers a finite number of 2D materials, an almost unlimited variety of molecules can be designed and synthesized with predictable functionalities. The possibilities offered by systems in which continuous molecular layers are interfaced with inorganic 2D materials to form hybrid organic/inorganic van der Waals heterostructures are emphasized. Similar to their inorganic counterpart, the hybrid structures have been exploited to put forward novel device architectures, such as antiambipolar transistors and barristors. Moreover, specific molecular groups can be employed to modify intrinsic properties and confer new capabilities to 2D materials. In particular, it is highlighted how molecular self-assembly at the surface of 2D materials can be mastered to achieve precise control over position and density of (molecular) functional groups, paving the way for a new class of hybrid functional materials whose final properties can be selected by careful molecular design.

18.
J Am Chem Soc ; 139(41): 14406-14411, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28840716

ABSTRACT

The use of biomimetic approaches toward the production of nonsolid yet functional architectures holds potential for the emergence of novel device concepts. Gels, in particular those obtained via self-assembly of π-conjugated molecules, are dynamic materials possessing unique (opto)electronic properties. Their adaptive nature imparts unprecedented responsivity to various stimuli. Hitherto, a viable device platform to electrically probe in situ a sol-gel transition is still lacking. Here we describe the fabrication of a sub-micrometer electrodic cavity, which enables low-voltage electrical operation of π-gels. Thanks to the in situ supramolecular self-assembly of the π-gelator occurring within the cavity, we conceived a novel gel-based memristor whose sol-gel transition is reversible and can be controlled via heating and dc bias. This work opens perspectives toward the fabrication of a novel generation of nonsolid multiresponsive devices.

19.
Adv Mater ; 29(38)2017 Oct.
Article in English | MEDLINE | ID: mdl-28741739

ABSTRACT

Nanostructured materials characterized by high surface-volume ratio hold the promise to constitute the active materials for next-generation sensors. Solution-processed hybrid organohalide perovskites, which have been extensively used in the last few years for optoelectronic applications, are characterized by a self-assembled nanostructured morphology, which makes them an ideal candidate for gas sensing. Hitherto, detailed studies of the dependence of their electrical characteristics on the environmental atmosphere have not been performed, and even the effect of a ubiquitous gas such as O2 has been widely overlooked. Here, the electrical response of organohalide perovskites to oxygen is studied. Surprisingly, a colossal increase (3000-fold) in the resistance of perovskite-based lateral devices is found when measured in a full oxygen atmosphere, which is ascribed to a trap healing mechanism originating from an O2 -mediated iodine vacancies filling. A variation as small as 70 ppm in the oxygen concentration can be detected. The effect is fast (<400 ms) and fully reversible, making organohalide perovskites ideal active materials for oxygen sensing. The effect of oxygen on the electrical characteristics of organohalide perovskites must be taken into deep consideration for the design and optimization of any other perovskite-based (opto-) electronic device working in ambient conditions.

20.
ACS Omega ; 2(4): 1672-1678, 2017 Apr 30.
Article in English | MEDLINE | ID: mdl-28474013

ABSTRACT

Small π-conjugated molecules can be designed and synthesized to undergo controlled self-assembly forming low-dimensional architectures, with programmed order at the supramolecular level. Such order is of paramount importance because it defines the property of the obtained material. Here, we have focused our attention to four pyromellitic diimide derivatives exposing different types of side chains. The joint effect of different noncovalent interactions including π-π stacking, H-bonding, and van der Waals forces on the four derivatives yielded different self-assembled architectures. Atomic force microscopy studies, corroborated with infrared and nuclear magnetic resonance spectroscopic measurements, provided complementary multiscale insight into these assemblies.

SELECTION OF CITATIONS
SEARCH DETAIL
...