Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
J Alzheimers Dis ; 99(4): 1159-1171, 2024.
Article in English | MEDLINE | ID: mdl-38848177

ABSTRACT

 The link between long COVID-19 and brain/cognitive impairments is concerning and may foster a worrisome worldwide emergence of novel cases of neurodegenerative diseases with aging. This review aims to update the knowledge, crosstalk, and possible intersections between the Post-COVID Syndrome (PCS) and Alzheimer's disease (AD). References included in this review were obtained from PubMed searches conducted between October 2023 and November 2023. PCS is a very heterogenous and poorly understood disease with recent evidence of a possible association with chronic diseases such as AD. However, more scientific data is required to establish the link between PCS and AD.


Subject(s)
Alzheimer Disease , COVID-19 , Humans , COVID-19/complications , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Cognitive Dysfunction/etiology
2.
Braz J Infect Dis ; 28(2): 103742, 2024.
Article in English | MEDLINE | ID: mdl-38670166

ABSTRACT

A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.


Subject(s)
Immunocompromised Host , Organ Transplantation , Transplant Recipients , Humans , Organ Transplantation/adverse effects , Animals , Virus Diseases/transmission , Virus Diseases/virology , Disease Susceptibility , Zoonoses/transmission , Zoonoses/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Risk Factors
3.
Med Clin (Barc) ; 162(4): 163-169, 2024 02 23.
Article in English, Spanish | MEDLINE | ID: mdl-38000940

ABSTRACT

OBJECTIVES: COVID-19, caused by SARS-CoV-2, has spread around the world since 2019. In severe cases, COVID-19 can lead to hospitalization and death. Systemic arterial hypertension and other comorbidities are associated with serious COVID-19 infection. Literature is unclear whether antihypertensive therapy with angiotensin receptor blockers (ARBs) and angiotensin converting enzyme (ACE) inhibitors affect COVID-19 outcomes. We aim to assess whether ACEI/ARB therapy is a risk factor for worse respiratory outcomes related to COVID-19 in hospitalized patients. METHODS: Retrospective study enrolling admitted COVID-19-diagnosed patients by RT-PCR at the Hospital Geral de Fortaleza, Brazil, during 2021. Patient medical records, sociodemographic, and clinical data were analyzed. Chest CT images were analyzed using CAD4COVID-CT/Thirona™ software. RESULTS: A total of 294 patients took part in the study. A cut-off point of 66% of pulmonary involvement was found by ROC curve, with patients having higher risk of death and intubation and lower 60-day survival. Advanced age (RR 1.025, P=0.001) and intubation (RR 16.747, P<0.001) were significantly associated with a higher risk of death. Advanced age (RR 1.023, P=0.001) and the use of noninvasive ventilation (RR 1.548, P=0.037) were associated with a higher risk of intubation. Lung involvement (>66%) increased the risk of death by almost 2.5-fold (RR 2.439, P<0.001) and by more than 2.3-fold the risk of intubation (RR 2.317, P<0.001). CONCLUSIONS: Altogether, our findings suggest that ACEI or ARB therapy does not affect the risk of death and disease course during hospitalization.


Subject(s)
COVID-19 , Hypertension , Humans , COVID-19/complications , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Angiotensin Receptor Antagonists/adverse effects , SARS-CoV-2 , Retrospective Studies , Receptors, Angiotensin/therapeutic use , Hypertension/drug therapy , Hypertension/epidemiology
4.
Front Nutr ; 10: 1217173, 2023.
Article in English | MEDLINE | ID: mdl-38089926

ABSTRACT

Poor environmental conditions combined with continuous unhealthy and unsafe diets may substantially increase the risk of a vicious cycle of enteric infections (EED-environmental enteric dysfunction) and malnutrition (DBM-double burden of malnutrition) in children. Gut melatonin, mainly produced by the intestinal microbiota, can modulate the composition, variety, and dynamics of the microbiota itself and may affect and be affected by intestinal microbiota alterations due to DBM and EED.

7.
Cell Mol Neurobiol ; 43(7): 3555-3573, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37270727

ABSTRACT

Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/metabolism , Microglia/metabolism , Astrocytes/metabolism , Stroke/drug therapy , Brain Ischemia/metabolism
8.
Braz J Infect Dis ; 27(3): 102776, 2023.
Article in English | MEDLINE | ID: mdl-37150212

ABSTRACT

Cryptosporidiosis is a waterborne protozoal infection that may cause life-threatening diarrhea in undernourished children living in unsanitary environments. The aim of this study is to identify new biomarkers that may be related to gut-brain axis dysfunction in children suffering from the malnutrition/infection vicious cycle, necessary for better intervention strategies. Myeloperoxidase (MPO) is a well-known neutrophil-related tissue factor released during enteropathy that could drive gut-derived brain inflammation. We utilized a model of environmental enteropathy in C57BL/6 weanling mice challenged by Cryptosporidium and undernutrition. Mice were fed a 2%-Protein Diet (dPD) for eight days and orally infected with 107-C. parvum oocysts. C. parvum oocyst shedding was assessed from fecal and ileal-extracted genomic DNA by qRT-PCR. Ileal histopathology scores were assessed for intestinal inflammation. Prefrontal cortex samples were snap-frozen for MPO ELISA assay and NF-kb immunostaining. Blood samples were drawn by cardiac puncture after anesthesia and sera were obtained for serum amyloid A (SAA) and MPO analysis. Brain samples were also obtained for Iba-1 prefrontal cortex immunostaining. C. parvum-infected mice showed sustained stool oocyst shedding for six days post-infection and increased fecal MPO and inflammation scores. dPD and cryptosporidiosis led to impaired growth and weight gain. C. parvum-infected dPD mice showed increased serum MPO and serum amyloid A (SAA) levels, markers of systemic inflammation. dPD-infected mice showed greater MPO, NF-kB expression, and Iba-1 immunolabeling in the prefrontal cortex, an important brain region involved in executive function. Our findings suggest MPO as a potential biomarker for intestinal-brain axis dysfunction due to environmental enteropathy.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Malnutrition , Animals , Mice , Brain/pathology , Cryptosporidiosis/complications , Cryptosporidiosis/pathology , Feces , Inflammation , Malnutrition/pathology , Mice, Inbred C57BL , NF-kappa B , Peroxidase , Serum Amyloid A Protein
9.
Environ Res ; 229: 115971, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37105291

ABSTRACT

This cross-sectional study evaluated the association between human exposure to mercury and cardiovascular risk using lipid profile (including apolipoproteins) and genetic analysis of Amazonian riverine population. Anthropometric data (gender, age, height, weight, blood pressure, and neck and waist circumferences) of the participants were recorded. Total mercury and methylmercury (MeHg) content were quantified in hair by ICP-MS and GC-pyro-AFS system. Polymorphisms rs662799, rs693, rs429358 and rs7412 (of genes of apolipoproteins A-V, B, and E at positions 112 and 158, respectively) were genotyped by real-time PCR. The population presented a dyslipidemia profile significantly correlated with high mercury levels. The apolipoprotein B/apolipoprotein A-I (ApoB/ApoA-I) index was also positively correlated with mercury, supporting a possible causal relationship. Allelic distributions were similar to those described in other populations, suggesting that genetic susceptibility may not have a significant role in the lipid alterations found in this work. This study demonstrated for the first time: i) the relationship between mercury exposure and cardiovascular risk-related apolipoproteins in humans, ii) the ApoB levels and the ApoB/ApoA-I index as the risk factors more strongly associated to the mercury-related dyslipidemia in humans, and iii) the prevalence of high/moderate risk of acute myocardial infarction in the vulnerable and chronically exposed-populations of the Amazon, in addition to the genotypic profile of the three most frequent polymorphisms in apolipoproteins of relevance for cardiovascular risk. This early detection of lipid alterations is essential to prevent the development of cardiovascular diseases (CVD), especially in chronically exposed populations such as those found in the Amazon. Therefore, in addition to provide data for the Minamata Convention implementation, our work is in line with the efforts joined by all members of the World Health Organization committed to reducing premature deaths originating from non-communicable diseases by 25% in 2025, including CVD.


Subject(s)
Cardiovascular Diseases , Dyslipidemias , Mercury , Humans , Cross-Sectional Studies , Apolipoprotein A-I/genetics , Apolipoprotein A-I/analysis , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Risk Factors , Vulnerable Populations , Mercury/toxicity , Mercury/analysis , Apolipoproteins B/analysis , Apolipoproteins/analysis , Heart Disease Risk Factors , Dyslipidemias/chemically induced , Dyslipidemias/epidemiology , Dyslipidemias/genetics , Hair/chemistry
10.
Pharmaceutics ; 15(4)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37111572

ABSTRACT

Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein's LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.

11.
Braz. j. infect. dis ; 27(3): 102776, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1447676

ABSTRACT

Abstract Cryptosporidiosis is a waterborne protozoal infection that may cause life-threatening diarrhea in undernourished children living in unsanitary environments. The aim of this study is to identify new biomarkers that may be related to gut-brain axis dysfunction in children suffering from the malnutrition/infection vicious cycle is necessary for better intervention strategies. Myeloperoxidase (MPO) is a well-known neutrophil-related tissue factor released during enteropathy that could drive gut-derived brain inflammation. We utilized a model of environmental enteropathy in C57BL/6 weanling mice challenged by Cryptosporidium and undernutrition. Mice were fed a 2%-Protein Diet (dPD) for eight days and orally infected with 107-C. parvum oocysts. C. parvum oocyst shedding was assessed from fecal and ileal-extracted genomic DNA by qRT-PCR. Ileal histopathology scores were assessed for intestinal inflammation. Prefrontal cortex samples were snap-frozen for MPO ELISA assay and NF-kb immunostaining. Blood samples were drawn by cardiac puncture after anesthesia and sera were obtained for serum amyloid A (SAA) and MPO analysis. Brain samples were also obtained for Iba-1 prefrontal cortex immunostaining. C. parvum-infected mice showed sustained stool oocyst shedding for six days post-infection and increased fecal MPO and inflammation scores. dPD and cryptosporidiosis led to impaired growth and weight gain. C. parvum-infected dPD mice showed increased serum MPO and serum amyloid A (SAA) levels, markers of systemic inflammation. dPD-infected mice showed greater MPO, NF-kB expression, and Iba-1 immunolabeling in the prefrontal cortex, an important brain region involved in executive function. Our findings suggest MPO as a potential biomarker for intestinal-brain axis dysfunction due to environmental enteropathy.

12.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430321

ABSTRACT

Methylmercury (MeHg) is highly toxic to the human brain. Although much is known about MeHg neurotoxic effects, less is known about how chronic MeHg affects hippocampal amino acids and other neurochemical markers in adult mice. In this study, we evaluated the MeHg effects on systemic lipids and inflammation, hippocampal oxidative stress, amino acid levels, neuroinflammation, and behavior in adult male mice. Challenged mice received MeHg in drinking water (2 mg/L) for 30 days. We assessed weight gain, total plasma cholesterol (TC), triglycerides (TG), endotoxin, and TNF levels. Hippocampal myeloperoxidase (MPO), malondialdehyde (MDA), acetylcholinesterase (AChE), amino acid levels, and cytokine transcripts were evaluated. Mice underwent open field, object recognition, Y, and Barnes maze tests. MeHg-intoxicated mice had higher weight gain and increased the TG and TC plasma levels. Elevated circulating TNF and LPS confirmed systemic inflammation. Higher levels of MPO and MDA and a reduction in IL-4 transcripts were found in the hippocampus. MeHg-intoxication led to increased GABA and glycine, reduced hippocampal taurine levels, delayed acquisition in the Barnes maze, and poor locomotor activity. No significant changes were found in AChE activity and object recognition. Altogether, our findings highlight chronic MeHg-induced effects that may have long-term mental health consequences in prolonged exposed human populations.


Subject(s)
Methylmercury Compounds , Animals , Humans , Male , Mice , Acetylcholinesterase/metabolism , Amino Acids , Hippocampus/metabolism , Inflammation/chemically induced , Methylmercury Compounds/toxicity , Methylmercury Compounds/metabolism , Weight Gain , Mice, Inbred C57BL
13.
J Stroke Cerebrovasc Dis ; 31(8): 106585, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35717719

ABSTRACT

OBJECTIVE: We tested the hypothesis that blocking pro-inflammatory platelet-activating factor receptor (PAFR) with LAU-0901 (LAU) plus administering a selected docosanoid, aspirin-triggered neuroprotectin D1 (AT-NPD1), which activates cell-survival pathways after middle cerebral artery occlusion (MCAo), would lead to neurological recovery. Dose-response and therapeutic window were investigated. MATERIALS AND METHODS: Male SD rats were subjected to 2 hours of MCAo. Behavior testing (days 1-7) and ex vivo MRI on day 7 were conducted. In dose-response, rats were treated with LAU (45 and 60 mg/kg; IP), AT-NPD1 (111, 222, 333 µg/kg; IV), LAU+AT-NPD1 (LAU at 3 hours and AT-NPD1 at 3.15 hours) or vehicle. In the therapeutic window, vehicle, LAU (60 mg/kg), AT-NPD1 (222 µg/kg), and LAU+AT-NPD1 were administered at 3, 4, 5, and 6 hours after onset of MCAo. RESULTS: LAU and AT-NPD1 treatments alone improved behavior by 40-42% and 20-30%, respectively, and LAU+AT-NPD1 by 40% compared to the vehicle group. T2-weighted imaging (T2WI) volumes were reduced with all doses of LAU and AT-NPD1 by 73-90% and 67-83% and LAU+AT-NPD1 by 94% compared to vehicle. In the therapeutic window, LAU+AT-NPD1, when administered at 3, 4, 5, and 6 hours, improved behavior by 50, 56, 33, and 26% and reduced T2WI volumes by 93, 90, 82, and 84% compared to vehicle. CONCLUSIONS: We have shown here for the first time that LAU plus AT-NPD1 treatment affords high-grade neuroprotection in MCAo, equaling or exceeding that afforded by LAU or AT-NPD1 alone at considerably moderate doses. It has a broad therapeutic window extending to 6 hours after stroke onset.


Subject(s)
Ischemic Stroke , Neuroprotective Agents , Stroke , Animals , Aspirin/therapeutic use , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/drug therapy , Male , Neuroprotection , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Rats, Sprague-Dawley , Stroke/diagnostic imaging , Stroke/drug therapy , Stroke/etiology
14.
Biomark Med ; 16(9): 681-692, 2022 06.
Article in English | MEDLINE | ID: mdl-35531623

ABSTRACT

Aim: To evaluate the prediction capacity of urinary biomarkers for death in critically ill patients with COVID-19. Methods: This is a prospective study with critically ill patients due to COVID-19 infection. The urinary biomarkers NGAL, KIM-1, MCP-1 and nephrin were quantified on ICU admission. Results: There was 40% of death. Urinary nephrin and MCP-1 had no association with death. Tubular biomarkers (proteinuria, NGAL and KIM-1) were predictors of death and cut-off values of them for death were useful in stratify patients with worse prognosis. In a multivariate cox regression analysis, only NGAL remains associated with a two-mount survival chance. Conclusion: Kidney tubular biomarkers, mostly urinary NGAL, had useful capacity to predict death in critically ill COVID-19 patients.


Subject(s)
Acute Kidney Injury , COVID-19 , Acute Kidney Injury/diagnosis , Biomarkers , Critical Illness , Hepatitis A Virus Cellular Receptor 1 , Humans , Lipocalin-2 , Prospective Studies
16.
Nutr Rev ; 80(5): 1001-1012, 2022 04 08.
Article in English | MEDLINE | ID: mdl-34406390

ABSTRACT

Apolipoprotein E plays a crucial role in cholesterol metabolism. The immunomodulatory functions of the human polymorphic APOE gene have gained particular interest because APOE4, a well-recognized risk factor for late-onset Alzheimer's disease, has also been recently linked to increased risk of COVID-19 infection severity in a large UK biobank study. Although much is known about apoE functions in the nervous system, much less is known about APOE polymorphism effects on malnutrition and enteric infections and the consequences for later development in underprivileged environments. In this review, recent findings are summarized of apoE's effects on intestinal function in health and disease and the role of APOE4 in protecting against infection and malnutrition in children living in unfavorable settings, where poor sanitation and hygiene prevail, is highlighted. The potential impact of APOE4 on later development also is discussed and gaps in knowledge are identified that need to be addressed to protect children's development under adverse environments.


Subject(s)
Apolipoprotein E4 , Chronic Disease , Malnutrition , Alzheimer Disease , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E/genetics , Child , Humans , Malnutrition/complications
17.
Toxicology ; 464: 152992, 2021 12.
Article in English | MEDLINE | ID: mdl-34670124

ABSTRACT

Mercury (Hg) is one of the most toxic environmental pollutants, especially when methylated, forming methylmercury (MeHg). MeHg affects DNA repair, increases oxidative stress, and predisposes to cancer. MeHg neurotoxicity is well-known, but recently MeHg-associated cardiovascular effects were recognized. This study evaluated circulating lipids, oxidative stress, and genotoxicity after MeHg-chronic exposure (20 mg/L in drinking water) in C57BL/6J wild-type and APOE knockout (ko) mice, the latter, being spontaneously dyslipidemic. Experimental mice were assigned to four groups: non-intoxicated and MeHg-intoxicated wild-type mice and non-intoxicated and MeHg-intoxicated APOE ko mice. Plasma levels of triglycerides, total cholesterol (TC), HDL, and LDL were analyzed. Liver lipid peroxidation and splenic gene expression of xeroderma pigmentosum complementation groups A, C, D, and G (XPA, XPC, XPD, and XPG), X-ray repair cross-complementing protein 1 (XRCC1), and telomerase reverse transcriptase (TERT) were measured. Fur Hg levels confirmed chronic MeHg intoxication. MeHg exposure raises TC levels both in wild-type and APOE ko mice. HDL and LDL-cholesterol levels were increased only in the MeHg-challenged APOE ko mice. MeHg increased liver lipid peroxidation, regardless of the genetic background. Unintoxicated APOE ko mice showed higher expression of TERT than all other groups. APOE deficiency increases XPA expression, regardless of MeHg intoxication. Furthermore, MeHg-intoxicated mice had more cytogenetic abnormalities, effect which was independent of APOE deficiency. More studies are needed to dissect the interactions between circulating lipids, MeHg intoxication, and DNA-repair pathways even at young age, interactions that likely play critical roles in cell senescence and the risk for chronic disorders later in life.


Subject(s)
Chromosome Aberrations/chemically induced , DNA Repair/drug effects , Methylmercury Compounds/toxicity , Oxidative Stress/drug effects , Animals , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Dyslipidemias/metabolism , Environmental Pollutants/toxicity , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE
18.
J Clin Med ; 10(16)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34441925

ABSTRACT

The metabolic syndrome (MetS) epidemic is a global challenge. Although developing countries (including Brazil, India, and South Africa) present a higher proportion of deaths by cardiovascular diseases than developed countries, most of our knowledge is from these developed countries. Amazonian riverine populations (ARP), as well as other vulnerable populations of the Southern Hemisphere, share low-income and traditional practices, among other features. This large cross-sectional study of ARP (n = 818) shows high prevalence of hypertension (51%) and obesity (23%). MetS was diagnosed in 38% of participants (especially in women and 60-69 years-old individuals) without the influence of ancestry. Only 7-8% of adults had no cardio-metabolic abnormalities related to MetS. Atherogenic dyslipidemia (low HDL-cholesterol) was generally observed, including in individuals without MetS. Still, slight differences were detected between settings with a clear predominance of hypertension in Tucuruí. Hypotheses on possible genetic influence and factors (nutrition transition and environmental pollutants -mercury) are proposed for future studies. Moreover, a roadmap to MetS progression based on the most prevalent components is provided for the development of tailored interventions in the Amazon (initially, individuals would present low HDL-cholesterol levels, later progressing to increased blood pressure characterizing hypertension, and ultimately reaching MetS with obesity). Our alarming results support the need to improve our knowledge on these vulnerable populations.

19.
Toxicol Res ; 37(3): 311-321, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34295795

ABSTRACT

Methylmercury (MeHg) intoxication is associated with hypertension, hypercholesterolemia, and atherosclerosis by mechanisms that are not yet fully understood. We investigated the effects of MeHg intoxication in atherosclerosis-prone (ApoE-KO) and resistant C57BL/6 mice. Mice were submitted to carotid stenosis surgery (to induce atherosclerosis faster) and received water or MeHg solution (20 mg/L) for 15 days. Tail plethysmography was performed before and after MeHg exposure. Food and MeHg solution intakes were monitored weekly. On the 15th day, mice were submitted to intravital fluorescence microscopy of mesenteric vasculature to observe in vivo leukocyte rolling and adhesion. Results showed that despite the high hair and liver Hg concentrations in the MeHg group, food and water (or MeHg solution) consumption and liver function marker levels were similar to those in controls. MeHg exposure increased total cholesterol, the atherogenic (non-HDL) fraction and systolic and diastolic blood pressure. MeHg exposure also induced inflammation, as seen by the increased rolling and adhered leukocytes in the mesenteric vasculature. Atherosclerosis lesions were more extensive in the aorta and carotid sites of MeHg-ApoE knockout mice. Surprisingly, MeHg exposure also induced atherosclerosis lesions in C57BL/6 mice, which are resistant to atherosclerosis formation. We concluded that MeHg intoxication might represent a risk for cardiovascular diseases since it accelerates atherogenesis by exacerbating several independent risk factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...