Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Lupus ; 30(5): 795-806, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33626969

ABSTRACT

OBJECTIVES: We aimed to identify transcriptional gene signatures predictive of clinical response, for pharmacodynamic evaluation, and to provide mechanistic insight into JNJ-55920839, a human IgG1κ neutralizing mAb targeting IFN-α/IFN-ω, in participants with systemic lupus erythematosus (SLE). METHODS: Blood samples were obtained from SLE participants at baseline and up to Day 130, who received six 10 mg/kg IV doses of JNJ-55920839/placebo every 2 weeks. Participants with mild-to-moderate SLE who achieved clinical responses using SLE Disease Activity Index 2000 Responder Index 4-point change were considered responders. Transcriptional signatures from longitudinally collected blood were generated by RNA-Seq; signatures were generated by microarray from baseline blood samples exposed in vitro to JNJ-55920839 versus untreated. RESULTS: Two gene signatures (IFN-I Signaling and Immunoglobulin Immune Response) exhibited pharmacodynamic changes among JNJ-55920839 responders. The Immunoglobulin signature, but not the IFN-I signature, was elevated at baseline in JNJ-55920839 responders. A gene cluster associated with neutrophil-mediated immunity was reduced at baseline in JNJ-55920839 responders, substantiated by lower neutrophil counts in responders. An IFN-I signature was suppressed by JNJ-55920839 in vitro treatment versus untreated blood to a greater extent in responders before in vivo dosing. CONCLUSIONS: These signatures may enable enrichment for treatment responders when using IFN-I-suppressing treatments in SLE.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Interferon-alpha/antagonists & inhibitors , Lupus Erythematosus, Systemic/drug therapy , Administration, Intravenous , Adult , Aged , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Biomarkers/blood , Case-Control Studies , Female , Humans , Immunoglobulins/genetics , Immunoglobulins/immunology , Interferon Type I/drug effects , Interferon Type I/genetics , Interferon-alpha/genetics , Interferon-alpha/immunology , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/genetics , Male , Middle Aged , Placebos/administration & dosage , Severity of Illness Index , Transcription, Genetic/genetics , Transcriptome/drug effects , Transcriptome/genetics , Ustekinumab/administration & dosage , Ustekinumab/pharmacology , Ustekinumab/therapeutic use
2.
Arthritis Rheumatol ; 73(3): 472-477, 2021 03.
Article in English | MEDLINE | ID: mdl-33010188

ABSTRACT

OBJECTIVE: In a previously reported phase II randomized, placebo-controlled, interventional trial, we demonstrated that treatment with ustekinumab, an anti-interleukin-12 (IL-12)/IL-23 p40 neutralizing monoclonal antibody, improved global and organ-specific measures of disease activity in patients with active systemic lupus erythematosus (SLE). Utilizing the biomarker data from this phase II clinical study, we sought to determine whether modulation of the expression of IL-12, IL-23, or both cytokines by ustekinumab is associated with clinical efficacy in patients with SLE. METHODS: This phase II randomized, placebo-controlled study enrolled 102 patients with autoantibody-positive SLE whose disease remained active despite standard-of-care therapy. Patients were randomized at a 3:2 ratio to receive ~6 mg/kg ustekinumab intravenously or placebo at week 0, followed by subcutaneous injections of 90 mg ustekinumab or placebo every 8 weeks, with placebo crossover to 90 mg ustekinumab every 8 weeks. The SLE Responder Index 4 (SRI-4) at week 24 was used to determine which patients could be classified as ustekinumab responders and which could be classified as nonresponders. In addition to measurements of p40 and IL-23, serum levels of interferon-γ (IFNγ), IL-17A, IL-17F, and IL-22, as a proxy for the IL-12 and IL-23 pathways, were quantified by immunoassay. RESULTS: Changes in the serum levels of IL-17A, IL-17F, and IL-22 at different time points after treatment were not consistently significantly associated with an SRI-4 clinical response to ustekinumab in patients with SLE. In contrast, an SRI-4 response to ustekinumab was significantly associated (P < 0.01) with durable reductions in the serum IFNγ protein levels at several time points relative to baseline, which was not observed in ustekinumab nonresponders or patients who received placebo. CONCLUSION: While not diminishing a potential role of IL-23, these serum biomarker assessments indicate that IL-12 blockade has an important role in the mechanism of action of ustekinumab treatment in patients with SLE.


Subject(s)
Interferon-gamma/immunology , Interleukin-12 Subunit p40/immunology , Lupus Erythematosus, Systemic/drug therapy , Ustekinumab/therapeutic use , Adolescent , Adult , Aged , Female , Humans , Interleukin-12 Subunit p40/antagonists & inhibitors , Interleukin-17/immunology , Interleukin-23/immunology , Interleukins/immunology , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/physiopathology , Male , Middle Aged , Proteomics , Treatment Outcome , Young Adult , Interleukin-22
3.
Mol Cancer Ther ; 19(1): 147-156, 2020 01.
Article in English | MEDLINE | ID: mdl-31582532

ABSTRACT

Receptor tyrosine kinase inhibitors have shown clinical benefit in clear cell renal cell carcinoma (ccRCC), but novel therapeutic strategies are needed. The angiopoietin/Tie2 and MET pathways have been implicated in tumor angiogenesis, metastases, and macrophage infiltration. In our study, we used trebananib, an angiopoietin 1/2 inhibitor, and a novel small-molecule MET kinase inhibitor in patient-derived xenograft (PDX) models of ccRCC. Our goal was to assess the ability of these compounds to alter the status of tumor-infiltrating macrophages, inhibit tumor growth and metastases, and prolong survival. Seven-week-old SCID mice were implanted subcutaneously or orthotopically with human ccRCC models. One month postimplantation, mice were treated with angiopoietin 1/2 inhibitor trebananib (AMG 386), MET kinase inhibitor, or combination. In our metastatic ccRCC PDX model, RP-R-02LM, trebananib alone, and in combination with a MET kinase inhibitor, significantly reduced lung metastases and M2 macrophage infiltration (P = 0.0075 and P = 0.0205, respectively). Survival studies revealed that treatment of the orthotopically implanted RP-R-02LM tumors yielded a significant increase in survival in both trebananib and combination groups. In addition, resection of the subcutaneously implanted primary tumor allowed for a significant survival advantage to the combination group compared with vehicle and both single-agent groups. Our results show that the combination of trebananib with a MET kinase inhibitor significantly inhibits the spread of metastases, reduces infiltrating M2-type macrophages, and prolongs survival in our highly metastatic ccRCC PDX model, suggesting a potential use for this combination therapy in treating patients with ccRCC.


Subject(s)
Angiopoietin-2/genetics , Carcinoma, Renal Cell/genetics , Animals , Carcinoma, Renal Cell/mortality , Cell Line, Tumor , Humans , Male , Mice , Mice, SCID , Neoplasm Metastasis , Survival Analysis , Tumor Microenvironment
4.
Lancet Rheumatol ; 2(10): e613-e622, 2020 Oct.
Article in English | MEDLINE | ID: mdl-38273624

ABSTRACT

BACKGROUND: Activation of the type I interferon (IFN) pathway is associated with systemic lupus erythematosus (SLE). We assessed the safety and tolerability of JNJ-55920839, a human monoclonal antibody that selectively neutralises most human IFNα subtypes and IFNω, in healthy participants and those with SLE. METHODS: This was a two-part, first-in-human, phase 1, randomised, double-blind, placebo-controlled, multicentre study of single-ascending intravenous doses of 0·3-15 mg/kg or a single subcutaneous dose of 1 mg/kg JNJ-55920839 administered to healthy participants (part A) and multiple intravenous doses of 10 mg/kg JNJ-55920839 administered to participants with SLE (part B). Healthy men and women (women had to be postmenopausal or surgically sterile) aged 18-55 years; bodyweight of 50-90 kg; and body-mass index (BMI) of 18-30 kg/m2 were eligible for inclusion in part A. Men and women with SLE were recruited to part B, fertile female participants were required to have a negative pregnancy test result before and during the study and be using two highly effective methods of birth control. The inclusion criteria for participants with SLE in part B matched part A, except for bodyweight (40-100 kg). In both parts, participants were randomly assigned (3:1) to receive JNJ-55920839 or placebo; a computer-generated randomisation schedule was used in part A, and randomisation was stratified by racial and ethnic subpopulation and elevated levels of serological disease activity in part B. The primary outcome was evaluation of safety and tolerability of the study regimen assessed using clinical and laboratory tests compared with placebo. This study is registered with ClinicalTrials.gov, NCT02609789. FINDINGS: Between Dec 11, 2015, and Sept 20, 2018, 48 healthy participants from a single site and 28 participants with mild-to-moderate SLE from 19 participating centres in seven countries were enrolled in the study. 12 healthy volunteers in part A and eight participants with SLE in part B received placebo. The most common treatment-emergent adverse events in both part A and B were in the system organ class of infections and infestations with a higher percentage of participants administered JNJ-55920839 with infections (ten [28%] of 36 in part A and nine [50%] of 18 in part B) than those exposed to placebo (two [17%] of 12 in part A and one [13%] of eight in part B). Particpants in part B were permitted to continue on defined ongoing standard of care medications. In two participants with SLE, locally disseminated herpes zoster of the skin was reported. No other clinically significant safety or tolerability issues were identified beyond the infections observed in participants treated with JNJ-55920839. INTERPRETATION: JNJ-55920839 was well tolerated and safe. Additional studies are warranted to determine optimal dosing of patients and further explore safety. FUNDING: Janssen.

5.
Clin Cancer Res ; 24(24): 6383-6395, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30190370

ABSTRACT

PURPOSE: Diet and healthy weight are established means of reducing cancer incidence and mortality. However, the impact of diet modifications on the tumor microenvironment and antitumor immunity is not well defined. Immunosuppressive tumor-associated macrophages (TAMs) are associated with poor clinical outcomes and are potentially modifiable through dietary interventions. We tested the hypothesis that dietary protein restriction modifies macrophage function toward antitumor phenotypes. EXPERIMENTAL DESIGN: Macrophage functional status under different tissue culture conditions and in vivo was assessed by Western blot, immunofluorescence, qRT-PCR, and cytokine array analyses. Tumor growth in the context of protein or amino acid (AA) restriction and immunotherapy, namely, a survivin peptide-based vaccine or a PD-1 inhibitor, was examined in animal models of prostate (RP-B6Myc) and renal (RENCA) cell carcinoma. All tests were two-sided. RESULTS: Protein or AA-restricted macrophages exhibited enhanced tumoricidal, proinflammatory phenotypes, and in two syngeneic tumor models, protein or AA-restricted diets elicited reduced TAM infiltration, tumor growth, and increased response to immunotherapies. Further, we identified a distinct molecular mechanism by which AA-restriction reprograms macrophage function via a ROS/mTOR-centric cascade. CONCLUSIONS: Dietary protein restriction alters TAM activity and enhances the tumoricidal capacity of this critical innate immune cell type, providing the rationale for clinical testing of this supportive tool in patients receiving cancer immunotherapies.


Subject(s)
Diet, Protein-Restricted , Dietary Proteins/metabolism , Macrophages/immunology , Macrophages/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Amino Acids/metabolism , Animals , Cell Line, Tumor , Cytokines/metabolism , Disease Models, Animal , Gastrointestinal Microbiome , Humans , Immunomodulation , Immunotherapy , Macrophage Activation/immunology , Macrophages/drug effects , Macrophages/pathology , Mice , Mice, Transgenic , Neoplasms/pathology , Neoplasms/therapy , Polyamines/metabolism
6.
Clin Cancer Res ; 24(23): 5977-5989, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30061365

ABSTRACT

PURPOSE: Translocation renal cell carcinoma (tRCC) represents a rare subtype of kidney cancer associated with various TFE3, TFEB, or MITF gene fusions that are not responsive to standard treatments for RCC. Therefore, the identification of new therapeutic targets represents an unmet need for this disease. EXPERIMENTAL DESIGN: We have established and characterized a tRCC patient-derived xenograft, RP-R07, as a novel preclinical model for drug development by using next-generation sequencing and bioinformatics analysis. We then assessed the therapeutic potential of inhibiting the identified pathway using in vitro and in vivo models. RESULTS: The presence of a SFPQ-TFE3 fusion [t(X;1) (p11.2; p34)] with chromosomal break-points was identified by RNA-seq and validated by RT-PCR. TFE3 chromatin immunoprecipitation followed by deep sequencing analysis indicated a strong enrichment for the PI3K/AKT/mTOR pathway. Consistently, miRNA microarray analysis also identified PI3K/AKT/mTOR as a highly enriched pathway in RP-R07. Upregulation of PI3/AKT/mTOR pathway in additional TFE3-tRCC models was confirmed by significantly higher expression of phospho-S6 (P < 0.0001) and phospho-4EBP1 (P < 0.0001) in established tRCC cell lines compared with clear cell RCC cells. Simultaneous vertical targeting of both PI3K/AKT and mTOR axis provided a greater antiproliferative effect both in vitro (P < 0.0001) and in vivo (P < 0.01) compared with single-node inhibition. Knockdown of TFE3 in RP-R07 resulted in decreased expression of IRS-1 and inhibited cell proliferation. CONCLUSIONS: These results identify TFE3/IRS-1/PI3K/AKT/mTOR as a potential dysregulated pathway in TFE3-tRCC, and suggest a therapeutic potential of vertical inhibition of this axis by using a dual PI3K/mTOR inhibitor for patients with TFE3-tRCC.


Subject(s)
Antineoplastic Agents/pharmacology , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/antagonists & inhibitors , Carcinoma, Renal Cell/metabolism , Insulin Receptor Substrate Proteins/antagonists & inhibitors , Kidney Neoplasms/metabolism , Phosphoinositide-3 Kinase Inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Adult , Animals , Antineoplastic Agents/therapeutic use , Binding Sites , Biomarkers, Tumor , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic/drug effects , Gene Silencing , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Male , Mice , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Protein Binding , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
7.
Cancer Res ; 78(11): 2886-2896, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29572225

ABSTRACT

Androgen receptor (AR) plays a crucial role in the development and progression of prostate cancer. AR expression has also been reported in other solid tumors, including renal cell carcinoma (RCC), but its biological role here remains unclear. Through integrative analysis of a reverse phase protein array, we discovered increased expression of AR in an RCC patient-derived xenograft model of acquired resistance to the receptor tyrosine kinase inhibitor (RTKi) sunitinib. AR expression was increased in RCC cell lines with either acquired or intrinsic sunitinib resistance in vitro An AR signaling gene array profiler indicated elevated levels of AR target genes in sunitinib-resistant cells. Sunitinib-induced AR transcriptional activity was associated with increased phosphorylation of serine 81 (pS81) on AR. Additionally, AR overexpression resulted in acquired sunitinib resistance and the AR antagonist enzalutamide-induced AR degradation and attenuated AR downstream activity in sunitinib-resistant cells, also indicated by decreased secretion of human kallikrein 2. Enzalutamide-induced AR degradation was rescued by either proteasome inhibition or by knockdown of the AR ubiquitin ligase speckle-type POZ protein (SPOP). In vivo treatment with enzalutamide and sunitinib demonstrated that this combination efficiently induced tumor regression in a RCC model following acquired sunitinib resistance. Overall, our results suggest the potential role of AR as a target for therapeutic interventions, in combination with RTKi, to overcome drug resistance in RCC.Significance: These findings highlight the therapeutic potential of targeting the androgen receptor to overcome RCC resistance to receptor tyrosine kinase inhibitors. Cancer Res; 78(11); 2886-96. ©2018 AACR.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Phosphorylation/drug effects , Receptors, Androgen/metabolism , Sunitinib/pharmacology , Animals , Benzamides , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Female , Humans , Male , Mice , Mice, SCID , Nitriles , Phenylthiohydantoin/analogs & derivatives , Phenylthiohydantoin/pharmacology , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Tissue Kallikreins/metabolism , Xenograft Model Antitumor Assays/methods
8.
Cancer Res ; 77(23): 6651-6666, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28978636

ABSTRACT

Acquired and intrinsic resistance to receptor tyrosine kinase inhibitors (RTKi) represents a major hurdle in improving the management of clear cell renal cell carcinoma (ccRCC). Recent reports suggest that drug resistance is driven by tumor adaptation via epigenetic mechanisms that activate alternative survival pathways. The histone methyl transferase EZH2 is frequently altered in many cancers, including ccRCC. To evaluate its role in ccRCC resistance to RTKi, we established and characterized a spontaneously metastatic, patient-derived xenograft model that is intrinsically resistant to the RTKi sunitinib, but not to the VEGF therapeutic antibody bevacizumab. Sunitinib maintained its antiangiogenic and antimetastatic activity but lost its direct antitumor effects due to kinome reprogramming, which resulted in suppression of proapoptotic and cell-cycle-regulatory target genes. Modulating EZH2 expression or activity suppressed phosphorylation of certain RTKs, restoring the antitumor effects of sunitinib in models of acquired or intrinsically resistant ccRCC. Overall, our results highlight EZH2 as a rational target for therapeutic intervention in sunitinib-resistant ccRCC as well as a predictive marker for RTKi response in this disease. Cancer Res; 77(23); 6651-66. ©2017 AACR.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Renal Cell/drug therapy , Drug Resistance, Neoplasm/physiology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Indoles/pharmacology , Kidney Neoplasms/drug therapy , Pyrroles/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Bevacizumab/pharmacology , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Female , Humans , Kidney Neoplasms/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/secondary , Mice , Mice, Inbred ICR , Mice, SCID , Neovascularization, Pathologic/drug therapy , Phosphorylation , Receptor Protein-Tyrosine Kinases/metabolism , Sunitinib , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Xenograft Model Antitumor Assays
9.
Clin Cancer Res ; 23(23): 7199-7208, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28939740

ABSTRACT

Purpose: On the basis of preclinical data suggesting that the class I selective HDAC inhibitor entinostat exerts a synergistic antitumor effect in combination with high-dose IL2 in a renal cell carcinoma model by downregulating Foxp3 expression and function of regulatory T cells (Treg), we conducted a phase I/II clinical study with entinostat and high-dose IL2 in patients with metastatic clear cell renal cell carcinoma (ccRCC).Experimental Design: Clear cell histology, no prior treatments, and being sufficiently fit to receive high-dose IL2 were the main eligibility criteria. The phase I portion consisted of two dose levels of entinostat (3 and 5 mg, orally every 14 days) and a fixed standard dose of IL2 (600,000 U/kg i.v.). Each cycle was 85 days. The primary endpoint was objective response rate and toxicity. Secondary endpoints included progression-free survival and overall survival.Results: Forty-seven patients were enrolled. At a median follow-up of 21.9 months, the objective response rate was 37% [95% confidence interval (CI), 22%-53%], the median progression-free survival was 13.8 months (95% CI, 6.0-18.8), and the median overall survival was 65.3 months (95% CI, 52.6.-65.3). The most common grade 3/4 toxicities were hypophosphatemia (16%), lymphopenia (15%), and hypocalcemia (7%), and all were transient. Decreased Tregs were observed following treatment with entinostat, and lower numbers were associated with response (P = 0.03).Conclusions: This trial suggests a promising clinical activity for entinostat in combination with high-dose IL2 in ccRCC patients and provides the first example of an epigenetic agent being rationally combined with immunotherapy. Clin Cancer Res; 23(23); 7199-208. ©2017 AACR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Renal Cell/drug therapy , Immunomodulation/drug effects , Kidney Neoplasms/drug therapy , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Benzamides/administration & dosage , Benzamides/adverse effects , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Dose-Response Relationship, Drug , Female , Humans , Hypophosphatemia/chemically induced , Interleukin-2/administration & dosage , Interleukin-2/adverse effects , Kaplan-Meier Estimate , Kidney Neoplasms/immunology , Kidney Neoplasms/pathology , Lymphopenia/chemically induced , Male , Middle Aged , Pyridines/administration & dosage , Pyridines/adverse effects , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
10.
Clin Cancer Res ; 23(17): 5187-5201, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28698201

ABSTRACT

PURPOSE: Recent advances in immunotherapy highlight the antitumor effects of immune checkpoint inhibition despite a relatively limited subset of patients receiving clinical benefit. The selective class I histone deacetylase inhibitor entinostat has been reported to have immunomodulatory activity including targeting of immune suppressor cells in the tumor microenvironment. Thus, we decided to assess whether entinostat could enhance anti-PD-1 treatment and investigate those alterations in the immunosuppressive tumor microenvironment that contribute to the combined antitumor activity. EXPERIMENTAL DESIGN: We utilized syngeneic mouse models of lung (LLC) and renal cell (RENCA) carcinoma and assessed immune correlates, tumor growth, and survival following treatment with entinostat (5 or 10 mg/kg, p.o.) and a PD-1 inhibitor (10 and 20 mg/kg, s.c.). RESULTS: Entinostat enhanced the antitumor effect of PD-1 inhibition in two syngeneic mouse tumor models by reducing tumor growth and increasing survival. Entinostat inhibited the immunosuppressive function of both polymorphonuclear (PMN)- and monocytic-myeloid derived suppressor cell (M-MDSC) populations. Analysis of MDSC response to entinostat revealed significantly reduced arginase-1, iNOS, and COX-2 levels, suggesting potential mechanisms for the altered function. We also observed significant alterations in cytokine/chemokine release in vivo with a shift toward a tumor-suppressive microenvironment. CONCLUSIONS: Our results demonstrate that entinostat enhances the antitumor effect of PD-1 targeting through functional inhibition of MDSCs and a transition away from an immune-suppressive tumor microenvironment. These data provide a mechanistic rationale for the clinical testing and potential markers of response of this novel combination in solid tumor patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Renal Cell/drug therapy , Myeloid-Derived Suppressor Cells/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Benzamides/administration & dosage , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/immunology , Carcinoma, Renal Cell/pathology , Disease Models, Animal , Histone Deacetylase Inhibitors/administration & dosage , Humans , Immune Tolerance/immunology , Immunotherapy/methods , Mice , Programmed Cell Death 1 Receptor/immunology , Pyridines/administration & dosage , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
11.
BMC Cancer ; 16: 617, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27506904

ABSTRACT

BACKGROUND: Class I histone deacetylases (HDACs) have been reported to be overexpressed in clear cell renal cell carcinoma (ccRCC), whereas the expression of class II HDACs is unknown. METHODS: Four isogenic cell lines C2/C2VHL and 786-O/786-OVHL with differential VHL expression are used in our studies. Cobalt chloride is used to mimic hypoxia in vitro. HIF-2α knockdowns in C2 and 786-O cells is used to evaluate the effect on HDAC 1 expression and activity. Invasion and migration assays are used to investigate the role of HDAC 1 and HDAC 6 expression in ccRCC cells. Comparisons are made between experimental groups using the paired T-test, the two-sample Student's T-test or one-way ANOVA, as appropriate. ccRCC and the TCGA dataset are used to observe the clinical correlation between HDAC 1 and HDAC 6 overexpression and overall and progression free survival. RESULTS: Our analysis of tumor and matched non-tumor tissues from radical nephrectomies showed overexpression of class I and II HDACs (HDAC6 only in a subset of patients). In vitro, both HDAC1 and HDAC6 over-expression increased cell invasion and motility, respectively, in ccRCC cells. HDAC1 regulated invasiveness by increasing matrix metalloproteinase (MMP) expression. Furthermore, hypoxia stimulation in VHL-reconstituted cell lines increased HIF isoforms and HDAC1 expression. Presence of hypoxia response elements in the HDAC1 promoter along with chromatin immunoprecipitation data suggests that HIF-2α is a transcriptional regulator of HDAC1 gene. Conversely, HDAC6 and estrogen receptor alpha (ERα) were co-localized in cytoplasm of ccRCC cells and HDAC6 enhanced cell motility by decreasing acetylated α-tubulin expression, and this biological effect was attenuated by either biochemical or pharmacological inhibition. Finally, analysis of human ccRCC specimens revealed positive correlation between HIF isoforms and HDAC. HDAC1 mRNA upregulation was associated with worse overall survival in the TCGA dataset. CONCLUSIONS: Taking together, these results suggest that HDAC1 and HDAC6 may play a role in ccRCC biology and could represent rational therapeutic targets.


Subject(s)
Carcinoma, Renal Cell/pathology , Histone Deacetylase 1/metabolism , Histone Deacetylases/metabolism , Kidney Neoplasms/pathology , Blotting, Western , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Cell Line, Tumor , Cell Movement , Chromatin Immunoprecipitation , Disease-Free Survival , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , Histone Deacetylase 6 , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Neoplasm Invasiveness/pathology , Tissue Array Analysis
12.
Epigenomics ; 8(3): 415-28, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26950532

ABSTRACT

HDAC inhibitors (HDACIs) are anticancer agents being developed in preclinical and clinical settings due to their capacity to modulate gene expression involved in cell growth, differentiation and apoptosis, through modification of both chromatin histone and nonhistone proteins. Most HDACIs in clinical development have cytotoxic or cytostatic properties and their direct inhibitory effects on tumor cells are well documented. Numerous studies have revealed that HDACIs have potent immunomodulatory activity in tumor-bearing animals and cancer patients, providing guidance to apply these agents in cancer immunotherapies. Here, we summarize recent reports addressing the effects of HDACIs on tumor cell immunogenicity, and on different components of the host immune system. In addition, we discuss the complexity of the immunomodulatory activity of these agents, which depends on the class specificity of the HDACIs, different experimental settings and the target immune cell populations.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Immunologic Factors/pharmacology , Immunotherapy/methods , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Cancer Vaccines/pharmacology , Humans , Lymphocytes/drug effects , Neoplasms/immunology , Neoplasms/therapy , Oncolytic Virotherapy/methods , T-Lymphocytes, Regulatory/drug effects
13.
Cancer Immunol Res ; 3(2): 136-48, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25370534

ABSTRACT

A major barrier for cancer immunotherapy is the presence of suppressive cell populations in patients with cancer, such as myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM), which contribute to the immunosuppressive microenvironment that promotes tumor growth and metastasis. Tasquinimod is a novel antitumor agent that is currently at an advanced stage of clinical development for treatment of castration-resistant prostate cancer. A target of tasquinimod is the inflammatory protein S100A9, which has been demonstrated to affect the accumulation and function of tumor-suppressive myeloid cells. Here, we report that tasquinimod provided a significant enhancement to the antitumor effects of two different immunotherapeutics in mouse models of cancer: a tumor vaccine (SurVaxM) for prostate cancer and a tumor-targeted superantigen (TTS) for melanoma. In the combination strategies, tasquinimod inhibited distinct MDSC populations and TAMs of the M2-polarized phenotype (CD206(+)). CD11b(+) myeloid cells isolated from tumors of treated mice expressed lower levels of arginase-1 and higher levels of inducible nitric oxide synthase (iNOS), and were less immunosuppressive ex vivo, which translated into a significantly reduced tumor-promoting capacity in vivo when these cells were coinjected with tumor cells. Tumor-specific CD8(+) T cells were increased markedly in the circulation and in tumors. Furthermore, T-cell effector functions, including cell-mediated cytotoxicity and IFNγ production, were potentiated. Taken together, these data suggest that pharmacologic targeting of suppressive myeloid cells by tasquinimod induces therapeutic benefit and provide the rationale for clinical testing of tasquinimod in combination with cancer immunotherapies.


Subject(s)
Antineoplastic Agents/therapeutic use , Immunotherapy/methods , Melanoma, Experimental/therapy , Prostatic Neoplasms/therapy , Quinolines/therapeutic use , Animals , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Castration , Combined Modality Therapy , Drug Evaluation, Preclinical/methods , Immune Tolerance/drug effects , Male , Melanoma, Experimental/immunology , Mice, Inbred C57BL , Myeloid Cells/immunology , Neoplasm Transplantation , Prostatic Neoplasms/immunology , Quinolones , T-Lymphocyte Subsets/immunology
14.
Mol Cancer Ther ; 14(2): 513-22, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25519701

ABSTRACT

Sunitinib is considered a first-line therapeutic option for patients with advanced clear cell renal cell carcinoma (ccRCC). Despite sunitinib's clinical efficacy, patients eventually develop drug resistance and disease progression. Herein, we tested the hypothesis whether initial sunitinib resistance may be transient and could be overcome by dose increase. In selected patients initially treated with 50 mg sunitinib and presenting with minimal toxicities, sunitinib dose was escalated to 62.5 mg and/or 75 mg at the time of tumor progression. Mice bearing two different patient-derived ccRCC xenografts (PDX) were treated 5 days per week with a dose-escalation schema (40-60-80 mg/kg sunitinib). Tumor tissues were collected before dose increments for immunohistochemistry analyses and drug levels. Selected intrapatient sunitinib dose escalation was safe and several patients had added progression-free survival. In parallel, our preclinical results showed that PDXs, although initially responsive to sunitinib at 40 mg/kg, eventually developed resistance. When the dose was incrementally increased, again we observed tumor response to sunitinib. A resistant phenotype was associated with transient increase of tumor vasculature despite intratumor sunitinib accumulation at higher dose. In addition, we observed associated changes in the expression of the methyltransferase EZH2 and histone marks at the time of resistance. Furthermore, specific EZH2 inhibition resulted in increased in vitro antitumor effect of sunitinib. Overall, our results suggest that initial sunitinib-induced resistance may be overcome, in part, by increasing the dose, and highlight the potential role of epigenetic changes associated with sunitinib resistance that can represent new targets for therapeutic intervention.


Subject(s)
Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Drug Resistance, Neoplasm , Epigenesis, Genetic , Indoles/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Pyrroles/therapeutic use , Animals , Carcinoma, Renal Cell/blood supply , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein , Epigenesis, Genetic/drug effects , Humans , Immunohistochemistry , Indoles/blood , Indoles/pharmacology , Kidney Neoplasms/blood supply , Kidney Neoplasms/pathology , Mice, SCID , Microvessels/drug effects , Microvessels/pathology , Polycomb Repressive Complex 2/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrroles/blood , Pyrroles/pharmacology , Sunitinib , Treatment Outcome , Xenograft Model Antitumor Assays
15.
J Biol Chem ; 289(34): 23693-700, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25023289

ABSTRACT

The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to epithelial-to-mesenchymal transition and malignant transformation. Therefore, it is of great importance to decipher the mechanisms underlying the regulations of YAP/TAZ at various levels. Here we report that non-receptor tyrosine phosphatase 14 (PTPN14) interacts with the Kibra protein. The interaction between PTPN14 and Kibra is through the PPXY domain of PTPN14 and WW domain of Kibra. PTPN14 and Kibra can induce the LATS1 activation independently and cooperatively. Interestingly, activation of LATS1 by PTPN14 is dependent on the C terminus of PTPN14 and independent of the upstream mammalian STE20-like kinase (MST) proteins. Furthermore, we demonstrate that PTPN14 increases the LAST1 protein stability. Last, overexpression of Kibra rescues the increased cell migration and aberrant three-dimensional morphogenesis induced by knockdown of PTPN14, and this rescue is mediated through the activation of the upstream LATS1 kinase and subsequent cytoplasmic sequestration of YAP. In summary, our results indicate a potential regulatory role of PTPN14 in the Hippo pathway and demonstrate another layer of regulation in the YAP oncogenic function.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Phosphoproteins/physiology , Protein Serine-Threonine Kinases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Base Sequence , Cell Line , Gene Knockdown Techniques , Humans , Microscopy, Fluorescence , Protein Binding , Protein Tyrosine Phosphatases, Non-Receptor/genetics , RNA Interference , Transcription Factors , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...