Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Cell Death Dis ; 15(6): 407, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862500

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 ß (IL-1ß) production in keratinocytes. Mechanistically, LZD triggers a reactive oxygen species (ROS)-independent mitochondrial damage that culminates in increased tethering between the endoplasmic reticulum (ER) and mitochondria, which in turn activates the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex by promoting its assembly to the mitochondrial surface. Downregulation of ER-mitochondria contact formation is sufficient to inhibit the LZD-driven NLRP3 inflammasome activation and IL-1ß production, restoring wound closure. These results identify the ER-mitochondria association as a key factor for NLRP3 activation and reveal a new mechanism in the regulation of the wound healing process that might be clinically relevant.


Subject(s)
Endoplasmic Reticulum , Inflammasomes , Interleukin-1beta , Mitochondria , NLR Family, Pyrin Domain-Containing 3 Protein , Wound Healing , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Wound Healing/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/drug effects , Humans , Animals , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Reactive Oxygen Species/metabolism , Mice , Keratinocytes/metabolism , Keratinocytes/drug effects , Mice, Inbred C57BL
2.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047437

ABSTRACT

The homozygous genotype of the Longevity-Associated Variant (LAV) in Bactericidal/Permeability-Increasing Fold-Containing Family B member 4 (BPIFB4) is enriched in long-living individuals of three independent populations and its genetic transfer in C57BL/6J mice showed a delay in frailty progression and improvement of several biomarkers of aging and multiple aspects of health. The C57BL/6J strain is a suitable model for studying therapies aimed at extending healthy aging and longevity due to its relatively short lifespan and the availability of aging biomarkers. Epigenetic clocks based on DNA methylation profiles are reliable molecular biomarkers of aging, while frailty measurement tools are used to evaluate overall health during aging. In this study, we show that the systemic gene transfer of LAV-BPIFB4 in aged C57BL/6J mice was associated with a significant reduction in the epigenetic clock-based biological age, as measured by a three CpG clock method. Furthermore, LAV-BPIFB4 gene transfer resulted in an improvement of the Vitality Score with a reduction in the Frailty Index. These findings further support the use of LAV-BPIFB4 gene therapy to induce beneficial effects on epigenetic mechanisms associated with aging and frailty in aged mice, with potential implications for future therapies to prevent frailty in humans.


Subject(s)
Frailty , Longevity , Humans , Mice , Animals , Aged , Longevity/genetics , Frailty/genetics , Mice, Inbred C57BL , Epigenesis, Genetic , Biomarkers , Genetic Therapy , DNA Methylation , Intercellular Signaling Peptides and Proteins/genetics
3.
Geroscience ; 45(4): 2195-2211, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36702990

ABSTRACT

Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals.


Subject(s)
Frailty , Humans , Animals , Mice , Aged , Frail Elderly , Geriatric Assessment/methods , Mice, Inbred C57BL , Aging
4.
Cancers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36011047

ABSTRACT

The advent of trastuzumab has significantly improved the prognosis of HER2-positive (HER2+) breast cancer patients; nevertheless, drug resistance limits its clinical benefit. Anti-HER2 active immunotherapy represents an attractive alternative strategy, but effective immunization needs to overcome the patient's immune tolerance against the self-HER2. Phage display technology, taking advantage of phage intrinsic immunogenicity, permits one to generate effective cancer vaccines able to break immune tolerance to self-antigens. In this study, we demonstrate that both preventive and therapeutic vaccination with M13 bacteriophages, displaying the extracellular (EC) and transmembrane (TM) domains of human HER2 or its Δ16HER2 splice variant on their surface (ECTM and Δ16ECTM phages), delayed mammary tumor onset and reduced tumor growth rate and multiplicity in ∆16HER2 transgenic mice, which are tolerant to human ∆16HER2. This antitumor protection correlated with anti-HER2 antibody production. The molecular mechanisms underlying the anticancer effect of vaccine-elicited anti-HER2 antibodies were analyzed in vitro against BT-474 human breast cancer cells, sensitive or resistant to trastuzumab. Immunoglobulins (IgG) purified from immune sera reduced cell viability mainly by impairing ERK phosphorylation and reactivating retinoblastoma protein function in both trastuzumab-sensitive and -resistant BT-474 cells. In conclusion, we demonstrated that phage-based HER2 vaccines impair mammary cancer onset and progression, opening new perspectives for HER2+ breast cancer treatment.

5.
Cell Death Dis ; 13(1): 86, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35087020

ABSTRACT

As we age, our body experiences chronic, systemic inflammation contributing to the morbidity and mortality of the elderly. The senescent immune system has been described to have a causal role in driving systemic aging and therefore may represent a key therapeutic target to prevent pathological consequences associated with aging and extend a healthy lifespan. Previous studies from our group associated a polymorphic haplotype variant in the BPIFB4 gene (LAV-BPIFB4) with exceptional longevity. Transfer of the LAV-BPIFB4 in preclinical models halted the progression of cardiovascular diseases (CVDs) and frailty by counterbalancing chronic inflammation. In the present study, we aimed to delineate the action of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer (AAV-LAV-BPIFB4) on the deleterious age-related changes of the immune system and thereby the senescence-associated events occurring in C57BL/6J mice aged 26 months. Our in vivo data showed that 26-months-old mice had a higher frequency of CD45+SA-beta Gal+ immune cells in peripheral blood than young (4-months-old) C57BL/6J mice. Notably, AAV-LAV-BPIFB4 gene transfer in aged mice reduced the pool of peripheral immunosenescent cells that were shown to be enriched in the spleen. In addition, the proper tuning of the immune secretory phenotype (IL1ßlow, IL6low, IL10high) associated with a significant reduction in SA-beta Gal-positive area of aorta from AAV-LAV treated mice. At the functional level, the reduction of senescence-associated inflammation ensured sustained NAD+ levels in the plasma of AAV-LAV-BPIFB4 old mice by preventing the NADase CD38 increase in F4/80+ tissue-resident macrophages and Ly6Chigh pro-inflammatory monocytes of the spleen and bone marrow. Finally, to validate the clinical implication of our findings, we showed that Long-living-individuals (LLIs, >95 years), which delay CVDs onset, especially if LAV-carriers, were characterized by high NAD+ levels. In conclusion, the new senotherapeutic action of LAV-BPIFB4 may offer a valuable therapeutic tool to control aging and reduce the burden of its pathophysiological disorders, such as CVDs.


Subject(s)
Cardiovascular Diseases , Genetic Therapy , Immune System , Intercellular Signaling Peptides and Proteins , Longevity , Animals , Cardiovascular Diseases/therapy , Inflammation , Intercellular Signaling Peptides and Proteins/genetics , Macrophages , Mice , Mice, Inbred C57BL , NAD , Phosphoproteins/genetics
6.
Antibiotics (Basel) ; 10(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34680791

ABSTRACT

BACKGROUND: LL-37 is the only human antimicrobial peptide that belongs to the cathelicidins. The aim of the study was to evaluate the efficacy of LL-37 in the management of MRSA-infected surgical wounds in mice. METHODS: A wound on the back of adult male BALB/c mice was made and inoculated with Staphylococcus aureus. Two control groups were formed (uninfected and not treated, C0; infected and not treated, C1) and six contaminated groups were treated, respectively, with: teicoplanin, LL-37, given topically and /or systemically. Histological examination of VEGF expression and micro-vessel density, and bacterial cultures of wound tissues, were performed. RESULTS: Histological examination of wounds in the group treated with topical and intraperitoneal LL-37 showed increased re-epithelialization, formation of the granulation tissue, collagen organization, and angiogenesis. CONCLUSIONS: Based on the mode of action, LL-37 has a potential future role in the management of infected wounds.

7.
Front Med (Lausanne) ; 8: 672257, 2021.
Article in English | MEDLINE | ID: mdl-34046421

ABSTRACT

Objectives: Excessive oxygen (O2) administration may have a negative impact on tissue perfusion by inducing vasoconstriction and oxidative stress. We aimed to evaluate the effects of different inhaled oxygen fractions (FiO2) on macro-hemodynamics and microvascular perfusion in a rat model. Methods: Isoflurane-anesthetised spontaneously breathing male Wistar rats were equipped with arterial (carotid artery) and venous (jugular vein) catheters and tracheotomy, and randomized into three groups: normoxia (FiO2 21%, n = 6), hyperoxia (FiO2 100%, n = 6) and mild hypoxia (FiO2 15%, n = 6). Euvolemia was maintained by infusing Lactate Ringer solution at 10 ml/kg/h. At hourly intervals for 4 h we collected measurements of: mean arterial pressure (MAP); stroke volume index (SVI), heart rate (HR), respiratory rate (by means of echocardiography); arterial and venous blood gases; microvascular density, and flow quality (by means of sidestream dark field videomicroscopy on the hindlimb skeletal muscle). Results: MAP and systemic vascular resistance index increased with hyperoxia and decreased with mild hypoxia (p < 0.001 in both cases, two-way analysis of variance). Hyperoxia induced a reduction in SVI, while this was increased in mild hypoxia (p = 0.002). The HR increased under hyperoxia (p < 0.05 vs. normoxia at 3 h). Cardiax index, as well as systemic O2 delivery, did not significantly vary in the three groups (p = 0.546 and p = 0.691, respectively). At 4 h, microvascular vessel surface (i.e., the percentage of tissue surface occupied by vessels) decreased by 29 ± 4% in the hyperoxia group and increased by 19 ± 7 % in mild hypoxia group (p < 0.001). Total vessel density and perfused vessel density showed similar tendencies (p = 0.003 and p = 0.005, respectively). Parameters of flow quality (microvascular flow index, percentage of perfused vessels, and flow heterogeneity index) remained stable and similar in the three groups. Conclusions: Hyperoxia induces vasoconstriction and reduction in skeletal muscle microvascular density, while mild hypoxia has an opposite effect.

8.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800754

ABSTRACT

The natural isoquinoline alkaloid Berberine (BBR) has been shown to possess several therapeutic effects, including anticancer activity. Different BBR derivatives have been designed and synthesized in order to obtain new compounds with enhanced anticancer efficacy. We previously showed that intraperitoneal (IP) administration of the BBR-derived NAX014 compound was able to counteract HER-2 overexpressing mammary tumors onset and progression in transgenic mice. However, the IP administration was found to induce organ toxicity at doses higher than 2.5 mg/Kg. In this study, we evaluated the effect of intragastric (IG) administration of 20 mg/kg of NAX014 on both safety and anticancer efficacy in HER-2/neu transgenic mice. Furthermore, cancer cell dissemination and migration, tumor cell senescence and immunological changes were examined. Our results demonstrated that IG NAX014 administration delayed the onset of mammary tumors with no negative effects on health and survival. NAX014 reduced HER-2 overexpressing BC cells migration in vitro and the frequency of lung metastasis in HER-2/neu transgenic mice. A statistically significant increase of senescence-associated p16 expression was observed in tumors from NAX014-treated mice, and the induction of cell senescence was observed in HER-2 overexpressing BC cells after in vitro treatment with NAX014. Although NAX014 did not modulate the presence of tumor-infiltrating lymphocytes, the level of circulating TNF-α and VEGF was found to be reduced in NAX014-treated mice. The overall results address the NAX014 compound as potential tool for therapeutic strategies against HER-2 overexpressing breast cancer.


Subject(s)
Antineoplastic Agents/therapeutic use , Berberine Alkaloids/therapeutic use , Genes, erbB-2 , Mammary Neoplasms, Experimental/prevention & control , Neoplasm Metastasis/prevention & control , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Berberine Alkaloids/administration & dosage , Berberine Alkaloids/chemistry , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Drug Screening Assays, Antitumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/genetics , Mice , Mice, Transgenic , Molecular Structure , Neoplasm Metastasis/drug therapy , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Rats , Tumor Burden/drug effects
9.
Nat Prod Res ; 35(22): 4779-4784, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32011175

ABSTRACT

Gram-negative sepsis ranks as the leading cause of death in intensive care units. Despite the development of new antibiotics, mortality from gram-negative sepsis remains high. The present study aims to investigate the in vivo effects of berberine (BBR) administration on septic death induced by intraperitoneal Escherichia coli injection. The results showed that (i) single 5 mg/kg dose of BBR increases the survival of septic mice, (ii) BBR administration improves the antimicrobial efficacy of antibiotic drug, (iii) BBR pre-treatment prevents improvements of BBR therapy without affecting the pro-survival effects of antibiotic drug. The effects of BBR administration were associated with immunological alterations represented by changes in CD4+ and CD8+ lymphocytes population and IL-6 and TNF-α production. This study highlighted the benefits of berberine administration as antibiotic adjuvant in E. coli sepsis. Furthermore, information about berberine-induced immunological perturbations and their influence on host response to infection and therapy has been shown.


Subject(s)
Berberine , Sepsis , Animals , Berberine/pharmacology , Escherichia coli , Mice , Sepsis/drug therapy
10.
Front Pharmacol ; 11: 1171, 2020.
Article in English | MEDLINE | ID: mdl-32848778

ABSTRACT

The age-dependent declines of skeletal muscle and cognitive functions often coexist in elderly subjects. The underlying pathophysiological mechanisms share common features of mitochondrial dysfunction, which plays a central role in the development of overt sarcopenia and/or dementia. Dietary supplementation with formulations of essential and branched-chain amino acids (EAA-BCAA) is a promising preventive strategy because it can preserve mitochondrial biogenesis and function. The senescence-accelerated mouse prone 8 (SAMP8) is considered an accurate model of age-related muscular and cognitive alterations. Hence, we aimed to investigate the progression of mitochondrial dysfunctions during muscular and cognitive aging of SAMP8 mice and to study the effects of a novel EAA-BCAA-based metabolic modulator on these changes. We evaluated body condition, motor endurance, and working memory of SAMP8 mice at 5, 9, 12, and 15 months of age. Parallel changes in protein levels of mitochondrial respiratory chain subunits, regulators of mitochondrial biogenesis and dynamics, and the antioxidant response, as well as respiratory complex activities, were measured in the quadriceps femoris and the hippocampus. The same variables were assessed in 12-month-old SAMP8 mice that had received dietary supplementation with the novel EAA-BCAA formulation, containing tricarboxylic acid cycle intermediates and co-factors (PD-0E7, 1.5 mg/kg/body weight/day in drinking water) for 3 months. Contrary to untreated mice, which had a significant molecular and phenotypic impairment, PD-0E7-treated mice showed preserved healthy body condition, muscle weight to body weight ratio, motor endurance, and working memory at 12 months of age. The PD-0E7 mixture increased the protein levels and the enzymatic activities of mitochondrial complex I, II, and IV and the expression of proliferator-activated receptor γ coactivator-1α, optic atrophy protein 1, and nuclear factor, erythroid 2 like 2 in muscles and hippocampi. The mitochondrial amyloid-ß-degrading pitrilysin metallopeptidase 1 was upregulated, while amyloid precursor protein was reduced in the hippocampi of PD-0E7 treated mice. In conclusion, we show that a dietary supplement tailored to boost mitochondrial respiration preserves skeletal muscle and hippocampal mitochondrial quality control and health. When administered at the early onset of age-related physical and cognitive decline, this novel metabolic inducer counteracts the deleterious effects of precocious aging in both domains.

11.
Front Cell Dev Biol ; 8: 542, 2020.
Article in English | MEDLINE | ID: mdl-32850775

ABSTRACT

Fibrosis is a condition that affects the connective tissue in an organ or tissue in the restorative or responsive phase as a result of injury. The consequences of excessive fibrotic tissue growth may lead to various physiological complications of deformity and impairment due to hypertrophic scars, keloids, and tendon adhesion without understating the psychological impact on the patient. However, no method accurately quantifies the rate and pattern of subcutaneous induced hypertrophic fibrosis. We, therefore, devised a rodent excisional model to evaluate the extent of fibrosis with talc. Tissue specimens were set on formalin, and paraffin sections for histological, immunohistochemical, and molecular analysis talc was used to induce the fibroproliferative mechanism typical of hypertrophic scars. This pathway is relevant to the activation of inflammatory and fibrotic agents to stimulate human hypertrophic scarring. This model reproduces morpho-functional features of human hypertrophic scars to investigate scar formation and assess potential anti-scarring therapies.

12.
Eur J Histochem ; 64(1)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32214282

ABSTRACT

This corrects the article "Anastomotic healing in a rat model of peritonitis after non-steroidal anti-inflammatory drug administration " in volume 64(1):3085 In the published article "Anastomotic healing in a rat model of peritonitis after non-steroidal anti-inflammatory drug administration" Eur J Histochem 2020;64(1):3085, https://doi.org/10.4081/ejh.2020.3085," one affiliation was published incorrectly. The authors apologize for any inconvenience that it may have caused. Roberto Ghiselli,1 Guendalina Lucarini,2 Monica Ortenzi,1 Eleonora Salvolini,3 Stefania Saccomanno,2 Fiorenza Orlando,4 Mauro Provinciali,4 Fabio Casciani,1 Mario Guerrieri1 1Clinic of Surgery, Marche Polytechnic University, Ancona 2Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona 3Department of Odontostomatologic and Specialized Clinical Sciences, Marche Polytechnic University, Ancona 4Experimental Animal Models for Aging Units, Research Department, Italian National Institute on Aging (INRCA) IRCCS, Ancona, Italy The affiliation should be corrected as follows: 4Experimental Animal Models for Aging Units, Scientific Technological Area, IRCCS INRCA, Ancona, Italy.

13.
Eur J Histochem ; 64(1)2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31941266

ABSTRACT

The tissue inflammatory response can influence the outcome of anastomotic healing. Anastomotic leakage represents a dreadful complication after gastrointestinal surgery, in particular sepsis and intra-abdominal infections impair the restorative process of colic anastomoses. It has been debated whether the administration of non-steroidal anti-inflammatory drugs (NSAIDs) is a risk factor for dehiscence, since many patients receive NSAIDs in the early postoperative period. Our aim was, for the first time, to analyze the morpho-functional effects of postoperative administration of two commonly used NSAIDs, Diclofenac and Ketorolac, on the healing process of colo-colic anastomoses constructed under condition of fecal peritonitis in a rat model. Sixty adult male rats underwent two surgical procedures: peritonitis induction and colo-colic anastomosis, and were divided into three groups: 20 rats received saline; 20 rats 4 mg/kg Diclofenac and 20 rats 5 mg/kg Ketorolac. We assessed anastomosis strength, morphological features of tissue wound healing, immunohistochemical metalloproteinase 9 (MMP9) expression and collagen deposition and content by Sirius red staining and hydroxyproline level. We found no significant difference in bursting pressure, collagen content and organization and morphological features between the groups, except a significantly reduced presence of inflammatory cells and MMP9 expression in the groups treated with NSAIDs. Our findings showed that Diclofenac and Ketorolac administration did not affect post-surgical healing and did not increase the leakage risk of colo-colic anastomoses during peritonitis.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cecum/surgery , Diclofenac/pharmacology , Ketorolac/pharmacology , Peritonitis/surgery , Wound Healing/drug effects , Anastomosis, Surgical , Anastomotic Leak/etiology , Anastomotic Leak/pathology , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cecum/metabolism , Cecum/pathology , Diclofenac/therapeutic use , Inflammation/drug therapy , Inflammation/pathology , Ketorolac/therapeutic use , Male , Matrix Metalloproteinase 9/metabolism , Peritonitis/metabolism , Peritonitis/pathology , Rats, Wistar , Risk Factors , Surgical Wound Dehiscence/etiology , Surgical Wound Dehiscence/pathology
14.
Article in English | MEDLINE | ID: mdl-31932371

ABSTRACT

Dalbavancin is an effective antibiotic that is widely used to treat skin infection. Our aim was to determine the effect of dalbavancin administration on wound healing compared to that of vancomycin and to elucidate if epidermal growth factor receptor (EGFR), matrix metalloproteinase 1 (MMP-1), MMP-9, and vascular endothelial growth factor (VEGF) could be involved in its therapeutic mechanism. A mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection was established. Mice were treated daily with vancomycin (10 mg/kg) and weekly with dalbavancin at day 1 (20 mg/kg) and day 8 (10 mg/kg). After 14 days, wounds were excised, and bacterial counts were performed. Wound healing was assessed by histological and immunohistochemical staining, followed by protein extraction and immunoblotting. Our microbiological results confirmed that both dalbavancin and vancomycin are effective in reducing the bacterial load in wounds. The dalbavancin group showed a strong effect compared with infected untreated animals and the vancomycin-treated group. The wounds treated with dalbavancin showed robust epidermal coverage with reconstitution of the regular and keratinized epidermal lining and well-organized granulation tissue with numerous blood vessels, although slightly less than that in the uninfected group. While in the vancomycin-treated group the epithelium appeared, in general, still hypertrophic, the granulation tissue appeared even less organized. We observed elevated EGFR and VEGF expression in both treated groups, although it was higher in dalbavancin-treated mice. MMP-1 and MMP-9 were decreased in uninfected tissue and in both treated tissues compared with untreated infected wounds. This study showed faster healing with dalbavancin treatment that might be associated with higher EGFR and VEGF levels.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Staphylococcal Skin Infections/drug therapy , Teicoplanin/analogs & derivatives , Vancomycin/pharmacology , Wound Healing/drug effects , Animals , Bacterial Load/drug effects , Disease Models, Animal , ErbB Receptors/metabolism , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Staphylococcus aureus/drug effects , Surgical Wound Infection/drug therapy , Teicoplanin/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
16.
Aging (Albany NY) ; 11(16): 6555-6568, 2019 08 28.
Article in English | MEDLINE | ID: mdl-31461407

ABSTRACT

BACKGROUND: There is an increasing concern about age-related frailty because of the growing number of elderly people in the general population. The Longevity-Associated Variant (LAV) of the human BPIFB4 gene was found to correct endothelial dysfunction, one of the mechanisms underlying frailty, in aging mice whereas the RV-BPIFB4 variant induced opposite effects. Thus, we newly hypothesize that, besides being associated with life expectancy, BPIFB4 polymorphisms can predict frailty.Aim and Results: Here we investigated if the BPIFB4 haplotypes, LAV, wild-type (WT) and RV, differentially associate with frailty in a cohort of 237 elderly subjects from Calabria region in Southern Italy. Moreover, we studied the effect of systemic adeno-associated viral vector-mediated LAV-BPIFB4 gene transfer on the progression of frailty in aging mice. We found an inverse correlation of the homozygous LAV-BPIFB4 haplotype with frailty in elderly subjects. Conversely, carriers of the RV-BPIFB4 haplotype showed an increase in the frailty status and risk of death. Moreover, in old mice, LAV-BPIFB4 gene transfer delayed frailty progression. CONCLUSIONS: These data indicate that specific BPIFB4 haplotypes could represent useful genetic markers of frailty. In addition, horizontal transfer of a healthy gene variant can attenuate frailty in aging organisms.


Subject(s)
Aging/genetics , Frailty/genetics , Phosphoproteins/metabolism , Aged , Aged, 80 and over , Animals , Female , Gene Expression Regulation , Genotype , Humans , Intercellular Signaling Peptides and Proteins , Longevity , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphoproteins/genetics , Specific Pathogen-Free Organisms
17.
J Vis Exp ; (146)2019 04 30.
Article in English | MEDLINE | ID: mdl-31107440

ABSTRACT

Pulmonary fibrosis is a hallmark of several human lung diseases with a different etiology. Since current therapies are rather limited, mouse models continue to be an essential tool for developing new antifibrotic strategies. Here we provide an effective method to investigate in vivo antifibrotic activity of human mesenchymal stromal cells obtained from whole umbilical cord (hUC-MSC) in attenuating bleomycin-induced lung injury. C57BL/6 mice receive a single endotracheal injection of bleomycin (1.5 U/kg body weight) followed by a double infusion of hUC-MSC (2.5 x 105) into the tail vein, 24 h and 7 days after the bleomycin administration. Upon sacrifice at days 8, 14, or 21, inflammatory and fibrotic changes, collagen content, and hUC-MSC presence in explanted lung tissue are analyzed. The injection of bleomycin into the mouse trachea allows the direct targeting of the lungs, leading to extensive pulmonary inflammation and fibrosis. The systemic administration of a double dose of hUC-MSC results in the early blunting of the bleomycin-induced lung injury. Intravenously infused hUC-MSC are transiently engrafted into the mouse lungs, where they exert their anti-inflammatory and antifibrotic activity. In conclusion, this protocol has been successfully applied for the preclinical testing of hUC-MSC in an experimental mouse model of human pulmonary fibrosis. However, this technique can be easily extended both to study the effect of different endotracheally administered substances on the pathophysiology of the lungs and to validate new anti-inflammatory and antifibrotic systemic therapies.


Subject(s)
Bleomycin/pharmacology , Lung Injury/chemically induced , Mesenchymal Stem Cell Transplantation , Pulmonary Fibrosis/chemically induced , Animals , Disease Models, Animal , Female , Lung Injury/pathology , Lung Injury/therapy , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/therapy , Trachea , Umbilical Cord/cytology
18.
Article in English | MEDLINE | ID: mdl-30961802

ABSTRACT

Escherichia coli 0157:H7 is a food-borne pathogen that can cause severe complications in vulnerable populations. Mouse infection models of E. coli 0157:H7 are usually developed under severe animal suffering classification by depleting the normal flora, in which age plays a role. OBJECTIVE: To develop a refined method for longitudinal monitoring of E. coli 0157:H7 in young and old mice with intact flora. METHODS: We applied discriminant analysis and computed composite standardized scores from 19 variables obtained from physiological parameters, analysis of locomotor activity, grip strength measurement and fecal shedding in 16 aged and 16 young C57BL/6 mice after two mild oral challenges of E. coli 0157:H7. The resulting scores were validated in another experiment performed in 24 aged and 24 young mice including a group (8 aged and 8 young mice) treated with oxytetracycline. RESULTS: We show that our scores are significantly affected in the post-infection period and that can be used to measure and compare the recovery time after a treatment. The scores are most sensitive when separately developed in young and aged mice. CONCLUSIONS: We developed a method that minimizes the level of animal suffering and that can be applied in preclinical testing of new therapies.


Subject(s)
Aging/physiology , Escherichia coli Infections/pathology , Gastrointestinal Microbiome/physiology , Hand Strength/physiology , Movement/physiology , Animals , Disease Models, Animal , Escherichia coli Infections/microbiology , Escherichia coli O157/growth & development , Feces/microbiology , Foodborne Diseases/microbiology , Longitudinal Studies , Mice , Mice, Inbred C57BL
19.
Hepatology ; 70(3): 883-898, 2019 09.
Article in English | MEDLINE | ID: mdl-30561764

ABSTRACT

Disorders of the biliary tree develop and progress differently according to patient age. It is currently not known whether the aging process affects the response to injury of cholangiocytes. The aim of this study was to identify molecular pathways associated with cholangiocyte aging and to determine their effects in the biological response to injury of biliary cells. A panel of microRNAs (miRs) involved in aging processes was evaluated in cholangiocytes of young and old mice (2 months and 22 months of age, respectively) and subjected to a model of sclerosing cholangitis. Intracellular pathways that are common to elevated miRs were identified by in silico analysis. Cell proliferation and senescence were evaluated in Twinfilin-1 (Twf1) knocked-down cells. In vivo, senescence-accelerated prone mice (Samp8, a model for accelerated aging), Twf1-/- , or their respective controls were subjected to DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine). Cholangiocytes from DDC-treated mice showed up-regulation of a panel of aging-related miRs. Twf1 was identified by in silico analysis as a common target of the up-regulated miRs. Twf1 expression was increased both in aged and diseased cholangiocytes, and in human cholangiopathies. Knock-down of Twf1 in cholangiocytes reduced cell proliferation. Senescence and senescence-associated secretory phenotype marker expression increased in Twf1 knocked-down cholangiocytes following pro-proliferative and pro-senescent (10-day lipopolysaccharide) stimulation. In vivo, Samp8 mice showed increased biliary proliferation, fibrosis, and Twf1 protein expression level, whereas Twf1-/- had a tendency toward lower biliary proliferation and fibrosis following DDC administration compared with control animals. Conclusion: We identified Twf1 as an important mediator of both cholangiocyte adaptation to aging processes and response to injury. Our data suggest that disease and aging might share common intracellular pathways.


Subject(s)
Cellular Senescence/genetics , Cholangitis, Sclerosing/pathology , MicroRNAs/genetics , Microfilament Proteins/genetics , Aging/genetics , Animals , Biliary Tract/pathology , Cell Proliferation/genetics , Cells, Cultured , Cholangitis, Sclerosing/genetics , Disease Models, Animal , Humans , Mice , Random Allocation , Sensitivity and Specificity
20.
Curr Top Med Chem ; 18(24): 2127-2132, 2018.
Article in English | MEDLINE | ID: mdl-30569865

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is a gram-negative pathogen, associated with a severe mortality rate. It is also difficult to treat due to numerous resistance mechanisms to a wide range of antibiotics. OBJECTIVE: Evaluate the activity of pexiganan, an antimicrobial peptide, in combination with two clinical antibiotics (azithromycin and tigecycline) that are not active against P. aeruginosa. METHODS: Ten clinical P. aeruginosa were isolated from urinary tract infections, blood culture, skin infections and respiratory tract infections. Minimum inhibitory concentrations (MICs) and synergies were evaluated by broth microdilution, checkerboard assays and time-kill studies. In vitro synergy was confirmed with an in vivo experiment using a murine model of sepsis. RESULTS: Pexiganan MICs were included between 2 and 16 mg/L. Tigecycline and azithromycin MICs were high as expected (4-64 mg/L and 32-256 mg/L, respectively). Pexiganan and azithromycin combination resulted to be additive or indifferent while tigecycline and pexiganan combination was synergic against seven out of ten P. aeruginosa and additive against the other strains. In vivo experiment confirmed the in vitro synergy, denoting a significative reduction of bacteria in mice treated with pexiganan and tigecycline combination. CONCLUSION: Antimicrobial peptides are molecules that could be useful in the fight against infections and pexiganan seems to be one of the most promising. Our results demonstrated that, in association with tigecycline, pexiganan administration could overcome antibiotic resistance and increase the effectiveness of treatment against P. aeruginosa sepsis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Pseudomonas aeruginosa/drug effects , Sepsis/drug therapy , Sepsis/microbiology , Tigecycline/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/therapeutic use , Antimicrobial Cationic Peptides/administration & dosage , Antimicrobial Cationic Peptides/therapeutic use , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial/drug effects , Drug Therapy, Combination , HeLa Cells , Humans , Injections, Intraperitoneal , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Structure-Activity Relationship , Tigecycline/administration & dosage , Tigecycline/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL