Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 38(1): 2171028, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36715272

ABSTRACT

The synthesis of carborane-1,8-naphthalimide conjugates and evaluation of their DNA-binding ability and anticancer activity were performed. A series of 4-carboranyl-3-nitro-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, were synthesised via amidation and reductive amination reactions, and their calf thymus DNA (ct-DNA)-binding properties were investigated using circular dichroism, UV-vis spectroscopy, and thermal denaturation. Results showed that conjugates 34-37 interacted very strongly with ct-DNA (ΔTm = 10.00-13.00 °C), indicating their ability to intercalate with DNA, but did not inhibit the activity of topoisomerase II. The conjugates inhibited the cell growth of the HepG2 cancer cell line in vitro. The same compounds caused the G2M phase arrest. Cell lines treated with these conjugates showed an increase in reactive oxygen species, glutathione, and Fe2+ levels, lipid peroxidation, and mitochondrial membrane potential relative to controls, indicating the involvement of ferroptosis. Furthermore, these conjugates caused lysosomal membrane permeabilization in HepG2 cells but not in MRC-5 cells.


Subject(s)
Antineoplastic Agents , Ferroptosis , Neoplasms , Intercalating Agents , Antineoplastic Agents/chemistry , Naphthalimides , Cell Line , DNA/chemistry , Lysosomes/metabolism , Cell Line, Tumor
2.
Int J Mol Sci ; 23(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35562989

ABSTRACT

In the present study, we continue our work related to the synthesis of 1,8-naphthalimide and carborane conjugates and the investigation of their anticancer activity and DNA-binding ability. For this purpose, a series of 4-carboranyl-1,8-naphthalimide derivatives, mitonafide, and pinafide analogs were synthesized using click chemistry, reductive amination, amidation, and Mitsunobu reactions. The calf thymus DNA (ct-DNA)-binding properties of the synthesized compounds were investigated by circular dichroism (CD), UV-vis spectroscopy, and thermal denaturation experiments. Conjugates 54-61 interacted very strongly with ct-DNA (∆Tm = 7.67-12.33 °C), suggesting their intercalation with DNA. They were also investigated for their in vitro effects on cytotoxicity, cell migration, cell death, cell cycle, and production of reactive oxygen species (ROS) in a HepG2 cancer cell line as well as inhibition of topoisomerase IIα activity (Topo II). The cytotoxicity of these eight conjugates was in the range of 3.12-30.87 µM, with the lowest IC50 value determined for compound 57. The analyses showed that most of the conjugates could induce cell cycle arrest in the G0/G1 phase, inhibit cell migration, and promote apoptosis. Two conjugates, namely 60 and 61, induced ROS production, which was proven by the increased level of 2'-deoxy-8-oxoguanosine in DNA. They were specifically located in lysosomes, and because of their excellent fluorescent properties, they could be easily detected within the cells. They were also found to be weak Topo II inhibitors.


Subject(s)
Antineoplastic Agents , Intercalating Agents , Antineoplastic Agents/chemistry , Apoptosis , Cell Line, Tumor , DNA/metabolism , DNA Topoisomerases, Type II/metabolism , Intercalating Agents/chemistry , Molecular Structure , Naphthalimides/chemistry , Reactive Oxygen Species/pharmacology , Structure-Activity Relationship , Topoisomerase II Inhibitors/pharmacology
3.
Antioxidants (Basel) ; 10(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204594

ABSTRACT

Recently, small compound-based therapies have provided new insights into the treatment of glioblastoma multiforme (GBM) by inducing oxidative impairment. Kinetin riboside (KR) and newly designed derivatives (8-azaKR, 7-deazaKR) selectively affect the molecular pathways crucial for cell growth by interfering with the redox status of cancer cells. Thus, these compounds might serve as potential alternatives in the oxidative therapy of GBM. The increased basal levels of reactive oxygen species (ROS) in GBM support the survival of cancer cells and cause drug resistance. The simplest approach to induce cell death is to achieve the redox threshold and circumvent the antioxidant defense mechanisms. Consequently, cells become more sensitive to oxidative stress (OS) caused by exogenous agents. Here, we investigated the effect of KR and its derivatives on the redox status of T98G cells in 2D and 3D cell culture. The use of spheroids of T98G cells enabled the selection of one derivative-7-deazaKR-with comparable antitumor activity to KR. Both compounds induced ROS generation and genotoxic OS, resulting in lipid peroxidation and leading to apoptosis. Taken together, these results demonstrated that KR and 7-deazaKR modulate the cellular redox environment of T98G cells, and vulnerability of these cells is dependent on their antioxidant capacity.

4.
Int J Mol Sci ; 22(5)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803403

ABSTRACT

We synthesized a series of novel 3-carboranyl-1,8-naphthalimide derivatives, mitonafide and pinafide analogs, using click chemistry, reductive amination and amidation reactions and investigated their in vitro effects on cytotoxicity, cell death, cell cycle, and the production of reactive oxygen species in a HepG2 cancer cell line. The analyses showed that modified naphthalic anhydrides and naphthalimides bearing ortho- or meta-carboranes exhibited diversified activity. Naphthalimides were more cytotoxic than naphthalic anhydrides, with the highest IC50 value determined for compound 9 (3.10 µM). These compounds were capable of inducing cell cycle arrest at G0/G1 or G2M phase and promoting apoptosis, autophagy or ferroptosis. The most promising conjugate 35 caused strong apoptosis and induced ROS production, which was proven by the increased level of 2'-deoxy-8-oxoguanosine in DNA. The tested conjugates were found to be weak topoisomerase II inhibitors and classical DNA intercalators. Compounds 33, 34, and 36 fluorescently stained lysosomes in HepG2 cells. Additionally, we performed a similarity-based assessment of the property profile of the conjugates using the principal component analysis. The creation of an inhibitory profile and descriptor-based plane allowed forming a structure-activity landscape. Finally, a ligand-based comparative molecular field analysis was carried out to specify the (un)favorable structural modifications (pharmacophoric pattern) that are potentially important for the quantitative structure-activity relationship modeling of the carborane-naphthalimide conjugates.


Subject(s)
Antineoplastic Agents , Intercalating Agents , Naphthalimides , Neoplasms , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Hep G2 Cells , Humans , Intercalating Agents/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Naphthalimides/chemical synthesis , Naphthalimides/chemistry , Naphthalimides/pharmacology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
5.
Pharmaceuticals (Basel) ; 13(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333865

ABSTRACT

Tuberculosis (TB) is a severe infectious disease with high mortality and morbidity. The emergence of drug-resistant TB has increased the challenge to eliminate this disease. Isoniazid (INH) remains the key and effective component in the therapeutic regimen recommended by World Health Organization (WHO). A series of isoniazid-carborane derivatives containing 1,2-dicarba-closo-dodecaborane, 1,7-dicarba-closo-dodecaborane, 1,12-dicarba-closo-dodecaborane, or 7,8-dicarba-nido-undecaborate anion were synthesized for the first time. The compounds were tested in vitro against the Mycobacterium tuberculosis (Mtb) H37Rv strain and its mutant (DkatG) defective in the synthesis of catalase-peroxidase (KatG). N'-((7,8-dicarba-nido-undecaboranyl)methylidene)isonicotinohydrazide (16) showed the highest activity against the wild-type Mtb strain. All hybrids could inhibit the growth of the ΔkatG mutant in lower concentrations than INH. N'-([(1,12-dicarba-closo-dodecaboran-1yl)ethyl)isonicotinohydrazide (25) exhibited more than 60-fold increase in activity against Mtb DkatG as compared to INH. This compound was also found to be noncytotoxic up to a concentration four times higher than the minimum inhibitory concentration 99% (MIC99) value.

6.
Apoptosis ; 25(11-12): 835-852, 2020 12.
Article in English | MEDLINE | ID: mdl-32955614

ABSTRACT

Small-molecule compound-based therapies have provided new insights into cancer treatment against mitochondrial impairment. N6-furfuryladenosine (kinetin riboside, KR) is a purine derivative and an anticancer agent that selectively affects the molecular pathways crucial for cell growth and apoptosis by interfering with mitochondrial functions and thus might be a potential mitotoxicant. Metabolism of cancer cells is predominantly based on the Crabtree effect that relies on glucose-induced inhibition of cell respiration and thus on oxidative phosphorylation (OXPHOS), which supports the survival of cancer cells in metabolic stress conditions. The simplest way to circumvent this phenomenon is to replace glucose with galactose in the culture environment. Consequently, cells become more sensitive to mitochondrial perturbations caused by mitotoxicants. In the present study, we evaluated several cellular parameters and investigated the effect of KR on mitochondrial functions in HepG2 cells forced to rely mainly on OXPHOS. We showed that KR in the galactose environment is a more potent apoptosis-inducing agent. KR decreases the mitochondrial membrane potential, reduces glutathione level, depletes cellular ATP, and induces reactive oxygen species (ROS) production in the OXPHOS state, leading to the loss of cell viability. Taken together, these results demonstrate that KR directly acts on the mitochondria to limit their function and that the sensitivity of cells is dependent on their ability to cope with energetic stress.


Subject(s)
Adenosine/pharmacology , Antineoplastic Agents/pharmacology , Galactose/physiology , Kinetin/pharmacology , Adenosine Triphosphate/metabolism , Apoptosis/drug effects , Culture Media , Glucose/physiology , Glycolysis/drug effects , Hep G2 Cells , Humans , Membrane Potential, Mitochondrial/drug effects , Neoplasms/metabolism , Neoplasms/physiopathology , Oxidative Phosphorylation/drug effects
7.
Bioorg Chem ; 94: 103432, 2020 01.
Article in English | MEDLINE | ID: mdl-31776032

ABSTRACT

The development of 1,8-naphthalimide derivatives as DNA-targeting anticancer agents is a rapidly growing area and has resulted in several derivatives entering into clinical trials. One of original recent developments is the use of boron clusters: carboranes and metallacarboranes in the design of pharmacologically active molecules. In this direction several naphthalimide-carborane and metallacarborane conjugates were synthesized in the present study. Their effect on a cancer cell line - cytotoxicity, type of cell death, cell cycle, and ROS production were investigated. The tested conjugates revealed different activities than the leading members of the naphthalimides family, namely mitonafide and pinafide. These derivatives could induce G0/G1 arrest and promote mainly apoptosis in HepG2 cell line. Our investigations demonstrated that the most promising molecule is N-{[2-(3,3'-commo-bis(1,2-dicarba-3-cobalta(III)-closo-dodecaborate-1-yl)ethyl]-1'-aminoethyl)}-1,8-naphthalimide] (17). It was shown that 17 exhibited cytotoxicity against HepG2 cells, activated cell apoptosis, and caused cell cycle arrest in HepG2 cells. Further investigations in HepG2 cells revealed that compound 17 can also induce ROS generation, particularly mitochondrial ROS (mtROS), which was also proved by increased 8-oxo-dG level in DNA. Additionally to biological assays the interaction of the new compounds with ct-DNA was studied by CD spectra and melting temperature, thus demonstrating that these compounds were rather weak classical DNA intercalators.


Subject(s)
Antineoplastic Agents/pharmacology , Boranes/pharmacology , DNA, Neoplasm/drug effects , Naphthalimides/pharmacology , Organometallic Compounds/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites , Boranes/chemistry , Cell Line , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Molecular Structure , Naphthalimides/chemistry , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Oxidative Stress/drug effects , Structure-Activity Relationship
8.
Acta Biochim Pol ; 63(4): 725-729, 2016.
Article in English | MEDLINE | ID: mdl-27755614

ABSTRACT

Cardiovascular Diseases (CD) are currently one of the most common causes of death. Because heart related deaths occur on such an enormous scale this phenomenon is referred to as an epidemic. Chronic and acute injury of the heart could be an effect of cardiac remodeling, which is a result of molecular, cellular and interstitial changes, influenced by hemodynamic load or neurohormonal activation (Cohn et al., 2000). These small deviations in cardiac activity and morphology may lead to an enormous negative effect. Despite a significant progress, knowledge of standard risk factors for cardiovascular diseases has become less and less effective, which is why predicting and seeking an appropriate treatment is very challenging. As a result, there is a growing interest in finding new markers of the CD. MicroRNAs (miRNAs), are short, non-coding RNAs responsible for regulation of gene expression at the post-transcriptional level. Among them that have the greatest potential are microRNA molecules that circulate in the blood plasma or serum, that are related to direct activation of signaling pathways, implicated in the aging process and thus for the development of cardiovascular disease. This paper is a summary of the current state of knowledge on miRNAs, their biogenesis and potential role as biomarkers to diagnose heart disease.


Subject(s)
Cardiovascular Diseases/blood , MicroRNAs/blood , Animals , Biomarkers/blood , Cardiovascular Diseases/genetics , Humans , MicroRNAs/genetics , RNA Interference
SELECTION OF CITATIONS
SEARCH DETAIL