Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37686111

ABSTRACT

The content and quality of gluten in wheat grain is a distinctive characteristic that determines the final properties of wheat flour. In this study, a genome-wide association study (GWAS) was performed on a wheat panel consisting of bread wheat varieties and the introgression lines (ILs) obtained via hybridization with tetraploid wheat relatives. A total of 17 stable quantitative trait nucleotides (QTNs) located on chromosomes 1D, 2A, 2B, 3D, 5A, 6A, 7B, and 7D that explained up to 21% of the phenotypic variation were identified. Among them, the QTLs on chromosomes 2A and 7B were found to contain three and six linked SNP markers, respectively. Comparative analysis of wheat genotypes according to the composition of haplotypes for the three closely linked SNPs of chromosome 2A indicated that haplotype TT/AA/GG was characteristic of ten ILs containing introgressions from T. timopheevii. The gluten content in the plants with TT/AA/GG haplotype was significantly higher than in the varieties with haplotype GG/GG/AA. Having compared the newly obtained data with the previously reported quantitative trait loci (QTLs) we inferred that the locus on chromosome 2A inherited from T. timopheevii is potentially novel. The introgression lines containing the new locus can be used as sources of genetic factors to improve the quality traits of bread wheat.


Subject(s)
Genome-Wide Association Study , Triticum , Triticum/genetics , Flour , Plant Breeding , Quantitative Trait Loci , Glutens/genetics
2.
Int J Mol Sci ; 21(13)2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630293

ABSTRACT

Stem rust caused by Puccinia graminis f. sp. tritici Eriks. is a dangerous disease of common wheat worldwide. Development and cultivation of the varieties with genetic resistance is one of the most effective and environmentally important ways for protection of wheat against fungal pathogens. Field phytopathological screening and genome-wide association study (GWAS) were used for assessment of the genetic diversity of a collection of spring wheat genotypes on stem rust resistance loci. The collection consisting of Russian varieties of spring wheat and introgression lines with alien genetic materials was evaluated over three seasons (2016, 2017 and 2018) for resistance to the native population of stem rust specific to the West Siberian region of Russia. The results indicate that most varieties displayed from moderate to high levels of susceptibility to P. graminis; 16% of genotypes had resistance or immune response. In total, 13,006 single-nucleotide polymorphism (SNP) markers obtained from the Infinium 15K array were used to perform genome-wide association analysis. GWAS detected 35 significant marker-trait associations (MTAs) with SNPs located on chromosomes 1A, 2A, 2B, 3B, 5A, 5B, 6A, 7A and 7B. The most significant associations were found on chromosomes 7A and 6A where known resistance genes Sr25 and Sr6Ai = 2 originated from Thinopyrum ssp. are located. Common wheat lines containing introgressed fragments from Triticum timopheevii and Triticum kiharae were found to carry Sr36 gene on 2B chromosome. It has been suggested that the quantitative trait loci (QTL) mapped to the chromosome 5BL may be new loci inherited from the T. timopheevii. It can be inferred that a number of Russian wheat varieties may contain the Sr17 gene, which does not currently provide effective protection against pathogen. This is the first report describing the results of analysis of the genetic factors conferring resistance of Russian spring wheat varieties to stem rust.


Subject(s)
Disease Resistance/genetics , Puccinia/pathogenicity , Triticum/genetics , Chromosome Mapping/methods , Chromosomes, Plant/genetics , Genome-Wide Association Study/methods , Genomics/methods , Genotype , Linkage Disequilibrium/genetics , Phenotype , Plant Breeding/methods , Plant Diseases/genetics , Polymorphism, Single Nucleotide/genetics , Puccinia/genetics , Quantitative Trait Loci/genetics , Russia , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...