Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
J Med Chem ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340451

ABSTRACT

Herein, we report the optimization of a series of epidermal growth factor receptor (EGFR) Exon20 insertion (Ex20Ins) inhibitors using structure-based drug design (SBDD), leading to the discovery of compound 28, a potent and wild type selective molecule, which demonstrates efficacy in multiple EGFR Ex20Ins xenograft models and blood-brain barrier penetration in preclinical species. Building on our earlier discovery of an in vivo probe, SBDD was used to design a novel bicyclic core with a lower molecular weight to facilitate blood-brain barrier penetration. Further optimization including strategic linker replacement and diversification of the ring system interacting with the c-helix enabled photolytic and metabolic stability improvements. Together with refinement of molecular properties important for achieving high brain exposure, including molecular weight, H-bonding, and polarity, 28 was identified.

2.
J Med Chem ; 67(11): 8988-9027, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38770784

ABSTRACT

Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of 36. Compound 36 is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (5), indicating that 36 may have lower EGFR wild-type associated toxicity.


Subject(s)
ErbB Receptors , Exons , Protein Kinase Inhibitors , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Animals , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/therapeutic use , Drug Discovery , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Mutagenesis, Insertional , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Xenograft Model Antitumor Assays , Mutation
3.
ACS Med Chem Lett ; 15(5): 583-589, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38746885

ABSTRACT

To further facilitate the discovery of cysteine reactive covalent inhibitors, there is a need to develop new reactive groups beyond the traditional acrylamide-type warheads. Herein we describe the design and synthesis of covalent EGFR inhibitors that use vinylpyridine as the reactive group. Structure-based design identified the quinazoline-containing vinylpyridine 6 as a starting point. Further modifications focused on reducing reactivity resulted in substituted vinyl compound 12, which shows high EGFR potency and good kinase selectivity, as well as significantly reduced reactivity compared to the starting compound 6, confirming that vinylpyridines can be applied as an alternative cysteine reactive warhead with tunable reactivity.

4.
J Med Chem ; 64(19): 14498-14512, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34570508

ABSTRACT

Poly-ADP-ribose-polymerase (PARP) inhibitors have achieved regulatory approval in oncology for homologous recombination repair deficient tumors including BRCA mutation. However, some have failed in combination with first-line chemotherapies, usually due to overlapping hematological toxicities. Currently approved PARP inhibitors lack selectivity for PARP1 over PARP2 and some other 16 PARP family members, and we hypothesized that this could contribute to toxicity. Recent literature has demonstrated that PARP1 inhibition and PARP1-DNA trapping are key for driving efficacy in a BRCA mutant background. Herein, we describe the structure- and property-based design of 25 (AZD5305), a potent and selective PARP1 inhibitor and PARP1-DNA trapper with excellent in vivo efficacy in a BRCA mutant HBCx-17 PDX model. Compound 25 is highly selective for PARP1 over other PARP family members, with good secondary pharmacology and physicochemical properties and excellent pharmacokinetics in preclinical species, with reduced effects on human bone marrow progenitor cells in vitro.


Subject(s)
DNA , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerases , Humans , Crystallography, X-Ray , DNA/chemistry , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Substrate Specificity
5.
J Med Chem ; 64(18): 13704-13718, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34491761

ABSTRACT

The epidermal growth factor receptor (EGFR) harboring activating mutations is a clinically validated target in non-small-cell lung cancer, and a number of inhibitors of the EGFR tyrosine kinase domain, including osimertinib, have been approved for clinical use. Resistance to these therapies has emerged due to a variety of molecular events including the C797S mutation which renders third-generation C797-targeting covalent EGFR inhibitors considerably less potent against the target due to the loss of the key covalent-bond-forming residue. We describe the medicinal chemistry optimization of a biochemically potent but modestly cell-active, reversible EGFR inhibitor starting point with sub-optimal physicochemical properties. These studies culminated in the identification of compound 12 that showed improved cell potency, oral exposure, and in vivo activity in clinically relevant EGFR-mutant-driven disease models, including an Exon19 deletion/T790M/C797S triple-mutant mouse xenograft model.


Subject(s)
Antineoplastic Agents/therapeutic use , ErbB Receptors/antagonists & inhibitors , Neoplasms/drug therapy , Organophosphorus Compounds/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Humans , Mice, Nude , Mice, SCID , Mutation , Organophosphorus Compounds/chemical synthesis , Organophosphorus Compounds/metabolism , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Rats , Xenograft Model Antitumor Assays
6.
SLAS Discov ; 24(2): 121-132, 2019 02.
Article in English | MEDLINE | ID: mdl-30543471

ABSTRACT

Methods to measure cellular target engagement are increasingly being used in early drug discovery. The Cellular Thermal Shift Assay (CETSA) is one such method. CETSA can investigate target engagement by measuring changes in protein thermal stability upon compound binding within the intracellular environment. It can be performed in high-throughput, microplate-based formats to enable broader application to early drug discovery campaigns, though high-throughput forms of CETSA have only been reported for a limited number of targets. CETSA offers the advantage of investigating the target of interest in its physiological environment and native state, but it is not clear yet how well this technology correlates to more established and conventional cellular and biochemical approaches widely used in drug discovery. We report two novel high-throughput CETSA (CETSA HT) assays for B-Raf and PARP1, demonstrating the application of this technology to additional targets. By performing comparative analyses with other assays, we show that CETSA HT correlates well with other screening technologies and can be applied throughout various stages of hit identification and lead optimization. Our results support the use of CETSA HT as a broadly applicable and valuable methodology to help drive drug discovery campaigns to molecules that engage the intended target in cells.


Subject(s)
Drug Discovery , High-Throughput Screening Assays/methods , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Temperature , Cell Line, Tumor , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Proto-Oncogene Proteins B-raf/metabolism
7.
Mol Cancer Ther ; 17(5): 885-896, 2018 05.
Article in English | MEDLINE | ID: mdl-29483211

ABSTRACT

EGFR exon 20 insertions (Ex20Ins) account for 4% to 10% of EGFR activating mutations in non-small cell lung cancer (NSCLC). EGFR Ex20Ins tumors are generally unresponsive to first- and second-generation EGFR inhibitors, and current standard of care for NSCLC patients with EGFR Ex20Ins is conventional cytotoxic chemotherapy. Therefore, the development of an EGFR TKI that can more effectively target NSCLC with EGFR Ex20Ins mutations represents a major advance for this patient subset. Osimertinib is a third-generation EGFR TKI approved for the treatment of advanced NSCLC harboring EGFR T790M; however, the activity of osimertinib in EGFR Ex20Ins NSCLC has yet to be fully assessed. Using CRISPR-Cas 9 engineered cell lines carrying the most prevalent Ex20Ins mutations, namely Ex20Ins D770_N771InsSVD (22%) or Ex20Ins V769_D770InsASV (17%), and a series of patient-derived xenografts, we have characterized osimertinib and AZ5104 (a circulating metabolite of osimertinib) activities against NSCLC harboring Ex20Ins. We report that osimertinib and AZ5104 inhibit signaling pathways and cellular growth in Ex20Ins mutant cell lines in vitro and demonstrate sustained tumor growth inhibition of EGFR-mutant tumor xenograft harboring the most prevalent Ex20Ins in vivo The antitumor activity of osimertinib and AZ5104 in NSCLC harboring EGFR Ex20Ins is further described herein using a series of patient-derived xenograft models. Together these data support clinical testing of osimertinib in patients with EGFR Ex20Ins NSCLC. Mol Cancer Ther; 17(5); 885-96. ©2018 AACR.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Piperazines/pharmacology , Acrylamides , Aniline Compounds , Animals , COS Cells , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Chlorocebus aethiops , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Exons/genetics , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, SCID , Mutation , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays/methods
8.
ACS Med Chem Lett ; 7(5): 514-9, 2016 May 12.
Article in English | MEDLINE | ID: mdl-27190603

ABSTRACT

A novel series of covalent inhibitors of EGFR (epidermal growth factor receptor) kinase was discovered through a combination of subset screening and structure-based design. These compounds preferentially inhibit mutant forms of EGFR (activating mutant and T790M mutant) over wild-type EGFR in cellular assays measuring EGFR autophosphorylation and proliferation, suggesting an improved therapeutic index in non-small cell lung cancer patients would be achievable relative to established EGFR inhibitors. We describe our design approaches, resulting in the identification of the lead compound 5, and our efforts to develop an understanding of the structure-activity relationships within this series. In addition, strategies to overcome challenges around metabolic stability and aqueous solubility are discussed. Despite limitations in its physical properties, 5 is orally bioavailable in mice and demonstrates pronounced antitumor activity in in vivo models of mutant EGFR-driven cancers.

9.
J Biomol Screen ; 16(9): 967-73, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21844326

ABSTRACT

This report describes the implementation of an automated work cell with commercially available hardware and software, capable of handling up to 15 separate reagents for performing 96-well or 384-well assays but with a small footprint and only a single liquid dispenser and two plate washers. Extremely flexible software was used to enable this simple work cell to perform processes that would traditionally require a much larger, more expensive automation platform. With the development of the C-Myc assays for the targets DYRK, BMX, PERK, and FAK, the authors describe a software solution to multibatch assays to run simultaneously, reducing reagent dead volume and increasing the efficiency of running multiple assays such that the time to generate data across multiple targets was significantly shortened. Although a larger automated system with multiple robotic arms and extensive equipment would also be able to process multiple assays simultaneously, the work cell we have described represents an inexpensive and flexible, easily upgradable option suitable for a wider range of labs.


Subject(s)
Enzyme-Linked Immunosorbent Assay/standards , Robotics , Biological Assay/standards , Enzyme-Linked Immunosorbent Assay/instrumentation , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Reproducibility of Results , Sensitivity and Specificity
10.
J Biomol Screen ; 16(9): 959-66, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21841143

ABSTRACT

This study investigated the use of large-scale transiently transfected cryopreserved cells for medium-throughput cellular screening. The data generated indicated that preprepared transiently transfected cryobanks can be used for cell-based assays and in fact can greatly enhance the consistency of data generated by cellular screens. In addition to this, a generic enzyme-linked immunosorbent assay method was designed that introduced a c-Myc tag to four different targets and allowed all four cell assays to be run using a standardized process. These process improvements yielded cost savings and greatly reduced the required resource, as well as reducing timelines for developing cellular assays.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Transfection , Cell Culture Techniques , Cell Line, Transformed , Cryopreservation , HEK293 Cells , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinases/genetics , Protein Kinases/metabolism , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL