Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 14(43): 15214-25, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-22914770

ABSTRACT

The methane reforming reaction with carbon dioxide as the oxidant over alumina-supported nickel and gold-doped nickel catalysts is studied using a variety of techniques such as reaction testing, vibrational spectroscopy (inelastic neutron scattering (INS), Raman scattering and infrared absorption), temperature-programmed oxidation (TPO), transmission electron microscopy and X-ray powder diffraction. The quantities of retained carbon and hydrogen are determined by TPO and INS, respectively. Minimal hydrogen retention indicates these catalysts to be very efficient at cycling hydrogen. The relative partitioning of hydrogen within the reaction media is used to formulate a qualitative description of the reaction kinetics. The presence of the gold modifier does not appear to provide any improvement in catalyst performance under the specified reaction conditions.

2.
Dalton Trans ; 40(20): 5494-504, 2011 May 28.
Article in English | MEDLINE | ID: mdl-21494706

ABSTRACT

Numerous investigations have been carried out into the conversion of biogas into synthesis gas (a mixture of H(2) + CO) over Ni/YSZ anode cermet catalysts. Biogas is a variable mixture of gases consisting predominantly of methane and carbon dioxide (usually in a 2 : 1 ratio, but variable with source), with other constituents including sulfur-containing gases such as hydrogen sulfide, which can cause sulfur poisoning of nickel catalysts. The effect of temperature on carbon deposition and sulfur poisoning of 90 : 10 mol% Ni/YSZ under biogas conversion conditions has been investigated by carrying out a series of catalytic reactions of methane-rich (2 : 1) CH(4)/CO(2) mixtures in the absence and presence of H(2)S over the temperature range 750-1000 °C. The effect of ceria-doping on carbon dioxide reforming, carbon deposition and sulfur tolerance has also been investigated by carrying out a similar series of reactions over ceria-doped Ni/YSZ. Ceria was doped at 5 mol% of the nickel content to give an anode catalyst composition of 85.5 : 4.5 : 10 mol% Ni/CeO(2)/YSZ. Reactions were followed using quadrupolar mass spectrometry (QMS) and the amount of carbon deposition was analysed by subjecting the reacted catalyst samples to a post-reaction temperature programmed oxidation (TPO). On undoped Ni/YSZ, carbon deposition occurred predominantly through thermal decomposition of methane. Ceria-doping significantly suppressed methane decomposition and at high temperatures simultaneously promoted the reverse Boudouard reaction, significantly lowering carbon deposition. Sulfur poisoning of Ni/YSZ occurred in two phases, the first of which caused the most activity loss and was accelerated on increasing the reaction temperature, while the second phase had greater stability and became more favourable with increasing reaction temperature. Adding H(2)S significantly inhibited methane decomposition, resulting in much less carbon deposition. Ceria-doping significantly increased the sulfur tolerance of Ni/YSZ, however, in the presence of H(2)S ceria did not promote the reverse Boudouard reaction and at high temperatures carbon deposition was greater over ceria-doped Ni/YSZ. In order to further study the effects of ceria-doping, a solid oxide fuel cell (SOFC) was constructed with a ceria-doped anode cermet and its electrical performance on simulated biogas compared to hydrogen was tested. This fuel cell was subsequently ran for 1000 h on simulated biogas with no degradation in its overall electrical performance.


Subject(s)
Biofuels , Gases/chemical synthesis , Hydrogen Sulfide/chemistry , Nickel/chemistry , Oxides/chemistry , Carbon Dioxide/chemistry , Electrodes , Gases/chemistry , Methane/chemistry , Oxidation-Reduction , Temperature
3.
Rev Sci Instrum ; 82(3): 034101, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456765

ABSTRACT

Inelastic neutron scattering (INS) is increasingly being used for the characterization of heterogeneous catalysts. As the technique is uniquely sensitive to hydrogen atoms, vibrational spectra can be obtained that emphasize a hydrogenous component or hydrogen-containing moieties adsorbed on to an inorganic support. However, due to sensitivity constraints, the technique typically requires large sample masses (∼10 g catalyst). A reaction system is hereby described that enables suitable quantities of heterogeneous catalysts to be appropriately activated and operated under steady-state conditions for extended periods of time prior to acquisition of the INS spectrum. In addition to ex situ studies, a cell is described which negates the need for a sample transfer stage between reaction testing and INS measurement. This cell can operate up to temperatures of 823 K and pressures up to 20 bar. The apparatus is also amenable to adsorption experiments at the gas-solid interface.

4.
Phys Chem Chem Phys ; 12(13): 3102-7, 2010 Apr 07.
Article in English | MEDLINE | ID: mdl-20237696

ABSTRACT

An alumina-supported nickel catalyst has been used to effect the 'dry' reforming of methane, using CO(2) as the oxidant. After 6 hours on-stream, reaction was stopped and the sample analysed by inelastic neutron scattering (INS). The INS spectrum reveals the presence of hydrocarbonaceous species as well as hydroxyl species present at the catalyst surface. Through the use of appropriate reference compounds, calibration procedures have been developed to determine the concentration of the retained hydrocarbon and hydroxyl moieties. Ancillary temperature programmed oxidation experiments establish the total carbon content. This approach not only enables the extent of overall carbon laydown to be determined but it also identifies the degree to which hydrogen is associated with carbon and oxygen atoms. The methodology described is generic and should be applicable to a wide number of heterogeneously catalysed systems.

5.
Chem Soc Rev ; 32(1): 17-28, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12596542

ABSTRACT

Despite being first demonstrated over 160 years ago, and offering significant environmental benefits and high electrical efficiency, it is only in the last two decades that fuel cells have offered a realistic prospect of being commercially viable. The solid oxide fuel cell (SOFC) offers great promise and is presently the subject of intense research activity. Unlike other fuel cells the SOFC is a solid-state device which operates at elevated temperatures. This review discusses the particular issues facing the development of a high temperature solid-state fuel cell and the inorganic materials currently used and under investigation for such cells, together with the problems associated with operating SOFCs on practical hydrocarbon fuels.

SELECTION OF CITATIONS
SEARCH DETAIL
...