Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
Phys Rev E ; 109(3-1): 034402, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38632804

ABSTRACT

Protein dynamics involves a myriad of mechanical movements happening at different time and space scales, which make it highly complex. One of the less understood features of protein dynamics is subdiffusivity, defined as sublinear dependence between displacement and time. Here, we use all-atoms molecular dynamics (MD) simulations to directly interrogate an already well-established theory and demonstrate that subdiffusivity arises from the fractal nature of the network of metastable conformations over which the dynamics, thought of as a diffusion process, takes place.


Subject(s)
Fractals , Proteins , Molecular Dynamics Simulation , Protein Conformation
2.
Nat Struct Mol Biol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538913

ABSTRACT

Transcription factors control gene expression; among these, transcriptional repressors must liberate the promoter for derepression to occur. Toxin-antitoxin (TA) modules are bacterial elements that autoregulate their transcription by binding the promoter in a T:A ratio-dependent manner, known as conditional cooperativity. The molecular basis of how excess toxin triggers derepression has remained elusive, largely because monitoring the rearrangement of promoter-repressor complexes, which underpin derepression, is challenging. Here, we dissect the autoregulation of the Salmonella enterica tacAT3 module. Using a combination of assays targeting DNA binding and promoter activity, as well as structural characterization, we determine the essential TA and DNA elements required to control transcription, and we reconstitute a repression-to-derepression path. We demonstrate that excess toxin triggers molecular stripping of the repressor complex off the DNA through multiple allosteric changes causing DNA distortion and ultimately leading to derepression. Thus, our work provides important insight into the mechanisms underlying conditional cooperativity.

3.
Nucleic Acids Res ; 52(6): 3375-3389, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38366792

ABSTRACT

The i-motif is an intriguing non-canonical DNA structure, whose role in the cell is still controversial. Development of methods to study i-motif formation under physiological conditions in living cells is necessary to study its potential biological functions. The cytosine analog 1,3-diaza-2-oxophenoxazine (tCO) is a fluorescent nucleobase able to form either hemiprotonated base pairs with cytosine residues, or neutral base pairs with guanines. We show here that when tCO is incorporated in the proximity of a G:C:G:C minor groove tetrad, it induces a strong thermal and pH stabilization, resulting in i-motifs with Tm of 39ºC at neutral pH. The structural determination by NMR methods reveals that the enhanced stability is due to a large stacking interaction between the guanines of the tetrad with the tCO nucleobase, which forms a tCO:C+ in the folded structure at unusually-high pHs, leading to an increased quenching in its fluorescence at neutral conditions. This quenching is much lower when tCO is base-paired to guanines and totally disappears when the oligonucleotide is unfolded. By taking profit of this property, we have been able to monitor i-motif folding in cells.


Subject(s)
Cytosine , DNA , Base Pairing , Cytosine/analogs & derivatives , DNA/chemistry , Nucleic Acid Conformation , Oxazines/chemistry , Oxazines/metabolism , HeLa Cells , Humans , Fluorescence
4.
Angew Chem Int Ed Engl ; 63(18): e202401626, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38416546

ABSTRACT

Coenzyme B12 (AdoCbl; 5'-deoxy-5'-adenosylcobalamin), the quintessential biological organometallic radical catalyst, has a formerly unanticipated, yet extensive, role in photoregulation in bacteria. The light-responsive cobalt-corrin AdoCbl performs this nonenzymatic role by facilitating the assembly of CarH photoreceptors into DNA-binding tetramers in the dark, suppressing gene expression. Conversely, exposure to light triggers the decomposition of this AdoCbl-bound complex by a still elusive photochemical mechanism, activating gene expression. Here, we have examined AdoRhbl, the non-natural rhodium analogue of AdoCbl, as a photostable isostructural surrogate for AdoCbl. We show that AdoRhbl closely emulates AdoCbl in its uptake by bacterial cells and structural functionality as a regulatory ligand for CarH tetramerization, DNA binding, and repressor activity. Remarkably, we find AdoRhbl is photostable even when bound "base-off/His-on" to CarH in vitro and in vivo. Thus, AdoRhbl, an antivitamin B12, also represents an unprecedented anti-photoregulatory ligand, opening a pathway to precisely target biomimetic inhibition of AdoCbl-based photoregulation, with new possibilities for selective antibacterial applications. Computational biomolecular analysis of AdoRhbl binding to CarH yields detailed structural insights into this complex, which suggest that the adenosyl group of photoexcited AdoCbl bound to CarH may specifically undergo a concerted non-radical syn-1,2-elimination mechanism, an aspect not previously considered for this photoreceptor.


Subject(s)
Phosphothreonine/analogs & derivatives , Rhodium , Ligands , Cobamides/chemistry , Bacteria/metabolism , DNA
5.
Nucleic Acids Res ; 52(D1): D393-D403, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953362

ABSTRACT

Molecular dynamics (MD) simulations are keeping computers busy around the world, generating a huge amount of data that is typically not open to the scientific community. Pioneering efforts to ensure the safety and reusability of MD data have been based on the use of simple databases providing a limited set of standard analyses on single-short trajectories. Despite their value, these databases do not offer a true solution for the current community of MD users, who want a flexible analysis pipeline and the possibility to address huge non-Markovian ensembles of large systems. Here we present a new paradigm for MD databases, resilient to large systems and long trajectories, and designed to be compatible with modern MD simulations. The data are offered to the community through a web-based graphical user interface (GUI), implemented with state-of-the-art technology, which incorporates system-specific analysis designed by the trajectory providers. A REST API and associated Jupyter Notebooks are integrated into the platform, allowing fully customized meta-analysis by final users. The new technology is illustrated using a collection of trajectories obtained by the community in the context of the effort to fight the COVID-19 pandemic. The server is accessible at https://bioexcel-cv19.bsc.es/#/. It is free and open to all users and there are no login requirements. It is also integrated into the simulations section of the BioExcel-MolSSI COVID-19 Molecular Structure and Therapeutics Hub: https://covid.molssi.org/simulations/ and is part of the MDDB effort (https://mddbr.eu).


Subject(s)
COVID-19 , Databases, Factual , Software , Humans , COVID-19/epidemiology , Molecular Dynamics Simulation , Pandemics , Meta-Analysis as Topic
6.
Nat Commun ; 14(1): 7920, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040726

ABSTRACT

Many functional aspects of the protein kinase p38α have been illustrated by more than three hundred structures determined in the presence of reducing agents. These structures correspond to free forms and complexes with activators, substrates, and inhibitors. Here we report the conformation of an oxidized state with an intramolecular disulfide bond between Cys119 and Cys162 that is conserved in vertebrates. The structure of the oxidized state does not affect the conformation of the catalytic site, but alters the docking groove by partially unwinding and displacing the short αD helix due to the movement of Cys119 towards Cys162. The transition between oxidized and reduced conformations provides a mechanism for fine-tuning p38α activity as a function of redox conditions, beyond its activation loop phosphorylation. Moreover, the conformational equilibrium between these redox forms reveals an unexplored cleft for p38α inhibitor design that we describe in detail.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Animals , Protein Conformation , Mitogen-Activated Protein Kinase 14/metabolism , Phosphorylation/physiology , Catalytic Domain , Oxidation-Reduction
7.
RNA ; 29(12): 1896-1909, 2023 12.
Article in English | MEDLINE | ID: mdl-37793790

ABSTRACT

The characterization of the conformational landscape of the RNA backbone is rather complex due to the ability of RNA to assume a large variety of conformations. These backbone conformations can be depicted by pseudotorsional angles linking RNA backbone atoms, from which Ramachandran-like plots can be built. We explore here different definitions of these pseudotorsional angles, finding that the most accurate ones are the traditional η (eta) and θ (theta) angles, which represent the relative position of RNA backbone atoms P and C4'. We explore the distribution of η - θ in known experimental structures, comparing the pseudotorsional space generated with structures determined exclusively by one experimental technique. We found that the complete picture only appears when combining data from different sources. The maps provide a quite comprehensive representation of the RNA accessible space, which can be used in RNA-structural predictions. Finally, our results highlight that protein interactions lead to significant changes in the population of the η - θ space, pointing toward the role of induced-fit mechanisms in protein-RNA recognition.


Subject(s)
Proteins , RNA , RNA/genetics , RNA/chemistry , Proteins/chemistry , Nucleic Acid Conformation
8.
J Chem Inf Model ; 63(16): 5259-5271, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37577978

ABSTRACT

Sequence-dependent properties of the DNA duplex have been accurately described using extensive molecular dynamics simulations. The RNA duplex meanwhile─which is typically represented as a sequence-averaged rigid rod─does not benefit from having equivalent molecular dynamics simulations. In this paper, we present a massive simulation effort using a set of ABC-optimized duplexes from which we derived tetramer-resolution properties of the RNA duplex and a simple mesoscopic model that can represent elastic properties of long RNA duplexes. Despite the extreme chemical similarity between DNA and RNA, the local and global elastic properties of the duplexes are very different. DNA duplexes show a complex and nonelastic pattern of flexibility, for instance, while RNA duplexes behave as an elastic system whose deformations can be represented by simple harmonic potentials. In RNA duplexes (RNA2), not only are intra- and interbase pair parameters (equilibrium and mechanical) different from those in the equivalent DNA duplex sequences (DNA2) but the correlations between movements also differ. Simple statements on the relative flexibility or stability of both polymers are meaningless and should be substituted by a more detailed description depending on the sequence and the type of deformation considered.


Subject(s)
DNA , RNA , RNA/chemistry , Nucleic Acid Conformation , DNA/chemistry , Molecular Dynamics Simulation , Polymers , Thermodynamics
9.
Nat Commun ; 14(1): 5104, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607906

ABSTRACT

Histone post-translational modifications promote a chromatin environment that controls transcription, DNA replication and repair, but surprisingly few phosphorylations have been documented. We report the discovery of histone H3 serine-57 phosphorylation (H3S57ph) and show that it is implicated in different DNA repair pathways from fungi to vertebrates. We identified CHK1 as a major human H3S57 kinase, and disrupting or constitutively mimicking H3S57ph had opposing effects on rate of recovery from replication stress, 53BP1 chromatin binding, and dependency on RAD52. In fission yeast, mutation of all H3 alleles to S57A abrogated DNA repair by both non-homologous end-joining and homologous recombination, while cells with phospho-mimicking S57D alleles were partly compromised for both repair pathways, presented aberrant Rad52 foci and were strongly sensitised to replication stress. Mechanistically, H3S57ph loosens DNA-histone contacts, increasing nucleosome mobility, and interacts with H3K56. Our results suggest that dynamic phosphorylation of H3S57 is required for DNA repair and recovery from replication stress, opening avenues for investigating the role of this modification in other DNA-related processes.


Subject(s)
Histones , Influenza A virus , Humans , Animals , Phosphorylation , Protein Processing, Post-Translational , DNA Repair , Chromatin
10.
RSC Chem Biol ; 4(7): 486-493, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37415868

ABSTRACT

We report the modelling of the DNA complex of an artificial miniprotein composed of two zinc finger modules and an AT-hook linking peptide. The computational study provides for the first time a structural view of these types of complexes, dissecting interactions that are key to modulate their stability. The relevance of these interactions was validated experimentally. These results confirm the potential of this type of computational approach for studying peptide-DNA complexes and suggest that they could be very useful for the rational design of non-natural, DNA binding miniproteins.

11.
Nat Commun ; 14(1): 3318, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37308482

ABSTRACT

p38α is a versatile protein kinase that can control numerous processes and plays important roles in the cellular responses to stress. Dysregulation of p38α signaling has been linked to several diseases including inflammation, immune disorders and cancer, suggesting that targeting p38α could be therapeutically beneficial. Over the last two decades, numerous p38α inhibitors have been developed, which showed promising effects in pre-clinical studies but results from clinical trials have been disappointing, fueling the interest in the generation of alternative mechanisms of p38α modulation. Here, we report the in silico identification of compounds that we refer to as non-canonical p38α inhibitors (NC-p38i). By combining biochemical and structural analyses, we show that NC-p38i efficiently inhibit p38α autophosphorylation but weakly affect the activity of the canonical pathway. Our results demonstrate how the structural plasticity of p38α can be leveraged to develop therapeutic opportunities targeting a subset of the functions regulated by this pathway.


Subject(s)
Inflammation , Signal Transduction , Humans , Phosphorylation
12.
Science ; 380(6651): eadh9351, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37347868

ABSTRACT

In eukaryotic cells, different organelles interact at membrane contact sites stabilized by tethers. Mitochondrial mitofusin 2 (MFN2) acts as a membrane tether that interacts with an unknown partner on the endoplasmic reticulum (ER). In this work, we identified the MFN2 splice variant ERMIT2 as the ER tethering partner of MFN2. Splicing of MFN2 produced ERMIT2 and ERMIN2, two ER-specific variants. ERMIN2 regulated ER morphology, whereas ERMIT2 localized at the ER-mitochondria interface and interacted with mitochondrial mitofusins to tether ER and mitochondria. This tethering allowed efficient mitochondrial calcium ion uptake and phospholipid transfer. Expression of ERMIT2 ameliorated the ER stress, inflammation, and fibrosis typical of liver-specific Mfn2 knockout mice. Thus, ER-specific MFN2 variants display entirely extramitochondrial MFN2 functions involved in interorganellar tethering and liver metabolic activities.


Subject(s)
Calcium , Endoplasmic Reticulum , GTP Phosphohydrolases , Mitochondria , Mitochondrial Proteins , Animals , Mice , Calcium/metabolism , Endoplasmic Reticulum/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Liver/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Protein Isoforms , Mice, Knockout , Humans , Mice, Inbred C57BL , HeLa Cells , Alternative Splicing , Endoplasmic Reticulum Stress
13.
Nucleic Acids Res ; 51(11): 5864-5882, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37207342

ABSTRACT

The compaction of mitochondrial DNA (mtDNA) is regulated by architectural HMG-box proteins whose limited cross-species similarity suggests diverse underlying mechanisms. Viability of Candida albicans, a human antibiotic-resistant mucosal pathogen, is compromised by altering mtDNA regulators. Among them, there is the mtDNA maintenance factor Gcf1p, which differs in sequence and structure from its human and Saccharomyces cerevisiae counterparts, TFAM and Abf2p. Our crystallographic, biophysical, biochemical and computational analysis showed that Gcf1p forms dynamic protein/DNA multimers by a combined action of an N-terminal unstructured tail and a long helix. Furthermore, an HMG-box domain canonically binds the minor groove and dramatically bends the DNA while, unprecedentedly, a second HMG-box binds the major groove without imposing distortions. This architectural protein thus uses its multiple domains to bridge co-aligned DNA segments without altering the DNA topology, revealing a new mechanism of mtDNA condensation.


Subject(s)
Candida albicans , DNA, Mitochondrial , DNA-Binding Proteins , Fungal Proteins , Humans , Candida albicans/genetics , Candida albicans/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Factors/metabolism , Fungal Proteins/metabolism
14.
Nucleic Acids Res ; 51(10): 4713-4725, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37099382

ABSTRACT

Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.


Subject(s)
Oligonucleotides, Antisense , Phosphorothioate Oligonucleotides , Humans , Phosphorothioate Oligonucleotides/chemistry , Oligonucleotides, Antisense/chemistry , DNA , Biological Transport , Sulfur
15.
Nucleic Acids Res ; 51(6): 2633-2640, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36912082

ABSTRACT

Traditional mesoscopic models of DNA flexibility use a reductionist-local approach, which assumes that the flexibility of DNA can be expressed as local harmonic movements (at the base-pair step level) in the helical space, ignoring multimodality and correlations in DNA movements, which have in reality a large impact in modulating DNA movements. We present a new multimodal-harmonic correlated model, which takes both contributions into account, providing, with a small computational cost, results of an unprecedented local and global quality. The accuracy of this method and its computational efficiency make it an alternative to explore the dynamics of long segments of DNA, approaching the chromatin range.


Subject(s)
DNA , Nucleic Acid Conformation , Models, Molecular , Base Pairing , Motion
16.
J Am Chem Soc ; 145(6): 3696-3705, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36745195

ABSTRACT

We study here a DNA oligonucleotide having the ability to form two different i-motif structures whose relative stability depends on pH and temperature. The major species at neutral pH is stabilized by two C:C+ base pairs capped by two minor groove G:C:G:C tetrads. The high pH and thermal stability of this structure are mainly due to the favorable effect of the minor groove tetrads on their adjacent positively charged C:C+ base pairs. At pH 5, we observe a more elongated i-motif structure consisting of four C:C+ base pairs capped by two G:T:G:T tetrads. Molecular dynamics calculations show that the conformational transition between the two structures is driven by the protonation state of key cytosines. In spite of large conformational differences, the transition between the acidic and neutral structures can occur without unfolding of the i-motif. These results represent the first case of a conformational switch between two different i-motif structures and illustrate the dramatic pH-dependent plasticity of this fascinating DNA motif.


Subject(s)
DNA , G-Quadruplexes , Humans , Nucleic Acid Conformation , DNA/chemistry , Base Pairing , Hydrogen-Ion Concentration
17.
Commun Chem ; 6(1): 31, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797370

ABSTRACT

G-quadruplex and i-motif nucleic acid structures are believed to fold through kinetic partitioning mechanisms. Such mechanisms explain the structural heterogeneity of G-quadruplex metastable intermediates which have been extensively reported. On the other hand, i-motif folding is regarded as predictable, and research on alternative i-motif folds is limited. While TC5 normally folds into a stable tetrameric i-motif in solution, we report that 2'-deoxy-2'-fluoroarabinocytidine (araF-C) substitutions can prompt TC5 to form an off-pathway and kinetically-trapped dimeric i-motif, thereby expanding the scope of i-motif folding landscapes. This i-motif is formed by two strands, associated head-to-head, and featuring zero-nucleotide loops which have not been previously observed. Through spectroscopic and computational analyses, we also establish that the dimeric i-motif is stabilized by fluorine and non-fluorine hydrogen bonds, thereby explaining the superlative stability of araF-C modified i-motifs. Comparative experimental findings suggest that the strength of these interactions depends on the flexible sugar pucker adopted by the araF-C residue. Overall, the findings reported here provide a new role for i-motifs in nanotechnology and also pose the question of whether unprecedented i-motif folds may exist in vivo.

18.
iScience ; 26(2): 105981, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36694788

ABSTRACT

Omicron BA.1 is a highly infectious variant of SARS-CoV-2 that carries more than thirty mutations on the spike protein in comparison to the Wuhan wild type (WT). Some of the Omicron mutations, located on the receptor-binding domain (RBD), are exposed to the surrounding solvent and are known to help evade immunity. However, the impact of buried mutations on the RBD conformations and on the mechanics of the spike opening is less evident. Here, we use all-atom molecular dynamics (MD) simulations with metadynamics to characterize the thermodynamic RBD-opening ensemble, identifying significant differences between WT and Omicron. Specifically, the Omicron mutations S371L, S373P, and S375F make more RBD interdomain contacts during the spike's opening. Moreover, Omicron takes longer to reach the transition state than WT. It stabilizes up-state conformations with fewer RBD epitopes exposed to the solvent, potentially favoring immune or antibody evasion.

19.
J Chem Inf Model ; 63(1): 321-334, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36576351

ABSTRACT

Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Resistance/genetics , ErbB Receptors/metabolism , Mutation , Drug Resistance, Neoplasm/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...