Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Cell Biol ; 101(2): 97-103, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36006827

ABSTRACT

Kindness in Science is a grassroots initiative to establish a scientific community built on diversity, respect and well-being, which would ultimately lead to happier scientists and better scientific outcomes. We believe that the key areas that we can become kinder as scientists include yourself, each other, the environment and the wider community. Here, we discuss the key barriers to kindness in each of these areas, and ways we can overcome these issues to create kinder, more sustainable and harmonious research teams.

2.
World J Stem Cells ; 11(2): 84-99, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30842807

ABSTRACT

BACKGROUND: An in vitro injury model mimicking a corneal surface injury was optimised using human corneal epithelial cells (hCEC). AIM: To investigate whether corneal-stroma derived stem cells (CSSC) seeded on an amniotic membrane (AM) construct manifests an anti-inflammatory, healing response. METHODS: Treatment of hCEC with ethanol and pro-inflammatory cytokines were compared in terms of viability loss, cytotoxicity, and pro-inflammatory cytokine release, in order to generate the in vitro injury. This resulted in an optimal injury of 20% (v/v) ethanol for 30 s with 1 ng/mL interleukin-1 (IL-1) beta. Co-culture experiments were performed with CSSC alone and with CSSC-AM constructs. The effect of injury and co-culture on viability, cytotoxicity, IL-6 and IL-8 production, and IL1B, TNF, IL6, and CXCL8 mRNA expression were assessed. RESULTS: Co-culture with CSSC inhibited loss of hCEC viability caused by injury. Enzyme linked immunosorbent assay and polymerase chain reaction showed a significant reduction in the production of IL-6 and IL-8 pro-inflammatory cytokines, and reduction in pro-inflammatory cytokine mRNA expression during co-culture with CSSC alone and with the AM construct. These results confirmed the therapeutic potential of the CSSC and the possible use of AM as a cell carrier for application to the ocular surface. CONCLUSION: CSSC were shown to have a potentially therapeutic anti-inflammatory effect when treating injured hCEC, demonstrating an important role in corneal regeneration and wound healing, leading to an improved knowledge of their potential use for research and therapeutic purposes.

SELECTION OF CITATIONS
SEARCH DETAIL
...