Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37960668

ABSTRACT

The aim of this study was to evaluate the ability of a droplet collar accessory attached to a portable near-infrared (NIR) instrument to characterize the artificial contamination of methanol in commercial whisky samples. Unadulterated samples (n = 12) were purchased from local bottle shops where adulterated samples were created by adding methanol (99% pure methanol) at six levels (0.5%, 1%, 2%, 3%, 4% and 5% v/v) to the commercial whisky samples (controls). Samples were analyzed using a drop collar accessory attached to a MicroNIR Onsite instrument (900-1650 nm). Partial least squares (PLS) cross-validation statistics obtained for the prediction of all levels of methanol (from 0 to 5%) addition were considered adequate when the whole adulteration range was used, coefficient of determination in cross-validation (R2cv: 0.95) and standard error in cross of validation (SECV: 0.35% v/v). The cross-validation statistics were R2cv: 0.97, SECV: 0.28% v/v after the 0.5% and 1% v/v methanol addition was removed. These results showed the ability of using a new sample presentation attachment to a portable NIR instrument to analyze the adulteration of whisky with methanol. However, the low levels of methanol adulteration (0.5 and 1%) were not well predicted using the NIR method evaluated.


Subject(s)
Methanol , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Food Contamination/analysis , Least-Squares Analysis
2.
J Colloid Interface Sci ; 628(Pt B): 1049-1060, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36049281

ABSTRACT

HYPOTHESIS: Titanium and its alloys are commonly used implant materials. Once inserted into the body, the interface of the biomaterials is the most likely site for the development of implant-associated infections. Imparting the titanium substrate with high-aspect-ratio nanostructures, which can be uniformly achieved using hydrothermal etching, enables a mechanical contact-killing (mechanoresponsive) mechanism of bacterial and fungal cells. Interaction between cells and the surface shows cellular inactivation via a physical mechanism meaning that careful engineering of the interface is needed to optimse the technology. This mechanism of action is only effective towards surface adsorbed microbes, thus any cells not directly in contact with the substrate will survive and limit the antimicrobial efficacy of the titanium nanostructures. Therefore, we propose that a dual-action mechanoresponsive and chemical-surface approach must be utilised to improve antimicrobial activity. The addition of antimicrobial silver nanoparticles will provide a secondary, chemical mechanism to escalate the microbial response in tandem with the physical puncture of the cells. EXPERIMENTS: Hydrothermal etching is used as a facile method to impart variant nanostrucutres on the titanium substrate to increase the antimicrobial response. Increasing concentrations (0.25 M, 0.50 M, 1.0 M, 2.0 M) of sodium hydroxide etching solution were used to provide differing degrees of nanostructured morphology on the surface after 3 h of heating at 150 °C. This produced titanium nanospikes, nanoblades, and nanowires, respectively, as a function of etchant concentration. These substrates then provided an interface for the deposition of silver nanoparticles via a reduction pathway. Methicillin-resistant Staphylococcous aureus (MRSA) and Candida auris (C. auris) were used as model bacteria and fungi, respectively, to test the effectiveness of the nanostructured titanium with and without silver nanoparticles, and the bio-interactions at the interface. FINDINGS: The presence of nanostructure increased the bactericidal response of titanium against MRSA from âˆ¼ 10 % on commercially pure titanium to a maximum of âˆ¼ 60 % and increased the fungicidal response from âˆ¼ 10 % to âˆ¼ 70 % in C. auris. Introducing silver nanoparticles increased the microbiocidal response to âˆ¼ 99 % towards both bacteria and fungi. Importantly, this study highlights that nanostructure alone is not sufficient to develop a highly antimicrobial titanium substrate. A dual-action, physical and chemical antimicrobial approach is better suited to produce highly effective antibacterial and antifungal surface technologies.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanostructures , Silver/pharmacology , Silver/chemistry , Titanium/pharmacology , Titanium/chemistry , Metal Nanoparticles/chemistry , Antifungal Agents/pharmacology , Sodium Hydroxide , Nanostructures/chemistry , Bacteria , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Alloys/pharmacology , Anti-Infective Agents/pharmacology , Biocompatible Materials/pharmacology
3.
ACS Nano ; 16(10): 17179-17196, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36121776

ABSTRACT

Nanomaterials have the potential to transform biological and biomedical research, with applications ranging from drug delivery and diagnostics to targeted interference of specific biological processes. Most existing research is aimed at developing nanomaterials for specific tasks such as enhanced biocellular internalization. However, fundamental aspects of the interactions between nanomaterials and biological systems, in particular, membranes, remain poorly understood. In this study, we provide detailed insights into the molecular mechanisms governing the interaction and evolution of one of the most common synthetic nanomaterials in contact with model phospholipid membranes. Using a combination of atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we elucidate the precise mechanisms by which citrate-capped 5 nm gold nanoparticles (AuNPs) interact with supported lipid bilayers (SLBs) of pure fluid (DOPC) and pure gel-phase (DPPC) phospholipids. On fluid-phase DOPC membranes, the AuNPs adsorb and are progressively internalized as the citrate capping of the NPs is displaced by the surrounding lipids. AuNPs also interact with gel-phase DPPC membranes where they partially embed into the outer leaflet, locally disturbing the lipid organization. In both systems, the AuNPs cause holistic perturbations throughout the bilayers. AFM shows that the lateral diffusion of the particles is several orders of magnitude smaller than that of the lipid molecules, which creates some temporary scarring of the membrane surface. Our results reveal how functionalized AuNPs interact with differing biological membranes with mechanisms that could also have implications for cooperative membrane effects with other molecules.


Subject(s)
Gold , Metal Nanoparticles , Lipid Bilayers , Citric Acid , Phospholipids , Microscopy, Atomic Force
4.
J Mater Chem B ; 10(37): 7527-7539, 2022 09 28.
Article in English | MEDLINE | ID: mdl-35024716

ABSTRACT

In the fight against drug-resistant pathogenic bacterial and fungal cells, low-dimensional materials are emerging as a promising alternative treatment method. Specifically, few-layer black phosphorus (BP) has demonstrated its effectiveness against a wide range of pathogenic bacterial and fungal cells with studies suggesting low cytotoxicity towards healthy mammalian cells. However, the antimicrobial mechanism of action of BP is not well understood. Before new applications for this material can be realised, further in-depth investigations are required. In this work, the biochemical interaction between BP and a series of microbial cells is investigated using a variety of microscopy and spectroscopy techniques to provide a greater understanding of the antimicrobial mechanism. Synchrotron macro-attenuated total reflection-Fourier transform infrared (ATR-FTIR) micro-spectroscopy is used to elucidate the chemical changes occurring outside and within the cell of interest after exposure to BP nanoflakes. The ATR-FTIR data, coupled with high-resolution microscopy, reveals major physical and bio-chemical changes to the phospholipids and amide I and II proteins, as well as minor chemical changes to the structural polysaccharides and nucleic acids when compared to untreated cells. These changes can be attributed to the physical interaction of the BP nanoflakes with the cell membranes, combined with the oxidative stress induced by the degradation of the BP nanoflakes. This study provides insight into the biochemical interaction of BP nanoflakes with microbial cells, allowing for a better understanding of the antimicrobial mechanism of action that will be important for the next generation of applications such as implant coatings, wound dressings, or medical surfaces.


Subject(s)
Anti-Infective Agents , Nucleic Acids , Amides , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Fourier Analysis , Mammals , Phosphorus , Spectroscopy, Fourier Transform Infrared/methods , Synchrotrons
5.
Biotechnol Bioeng ; 118(4): 1511-1519, 2021 04.
Article in English | MEDLINE | ID: mdl-33399220

ABSTRACT

UV-visible spectroscopy (UV-Vis) is routinely used in microbiology as a tool to check the optical density (OD) pertaining to the growth stages of microbial cultures at the single wavelength of 600 nm, better known as the OD600 . Typically, modern UV-Vis spectrophotometers can scan in the region of approximately 200-1000 nm in the electromagnetic spectrum, where users do not extend the use of the instrument's full capability in a laboratory. In this study, the full potential of UV-Vis spectrophotometry (multiwavelength collection) was used to examine bacterial growth phases when treated with antibiotics showcasing the ability to understand the point of resistance when an antibiotic is introduced into the media and therefore understand the biochemical changes of the infectious pathogens. A multiplate reader demonstrated a high throughput experiment (96 samples) to understand the growth of Escherichia coli when varied concentrations of the antibiotic tetracycline was added into the well plates. Principal component analysis (PCA) and partial least squares discriminant analysis were then used as the data mining techniques to interpret the UV-Vis spectral data and generate machine learning "proof of principle" for the UV-Vis spectrophotometer plate reader. Results from this study showed that the PCA analysis provides an accurate yet simple visual classification and the recognition of E. coli samples belonging to each treatment. These data show significant advantages when compared to the traditional OD600 method where we can now understand biochemical changes in the system rather than a mere optical density measurement. Due to the unique experimental setup and procedure that involves indirect use of antibiotics, the same test could be used for obtaining practical information on the type, resistance, and dose of antibiotic necessary to establish the optimum diagnosis, treatment, and decontamination strategies for pathogenic and antibiotic resistant species.


Subject(s)
Escherichia coli/growth & development , Machine Learning , Models, Biological , Tetracycline Resistance , Spectrophotometry, Ultraviolet
6.
Nanomaterials (Basel) ; 9(2)2019 Feb 09.
Article in English | MEDLINE | ID: mdl-30744133

ABSTRACT

Ga⁻Sn⁻Zn eutectic alloy is a non-toxic liquid metal alloy which could be used in a multitude of applications, including as a heat transfer agent, in gas sensing, and in medicine. Alloys containing gallium readily oxidise in air, forming a thin oxide layer that influences the properties of liquid metals and which has not been studied. In this study, the oxide layer formed on Ga⁻Sn⁻Zn alloy was transferred at room temperature onto three substrates-quartz, glass and silicon. The contact angle between the liquid alloy and different substrates was determined. The obtained thin oxide films were characterised using atomic force microscopy, X-ray photon spectroscopy, and optical and transmission electron microscopy. The contact angle does not influence the deposition of the layers. It was determined that it is possible to obtain nanometric oxide layers of a few micrometres in size. The chemical composition was determined by XPS and EDS independently, and showed that the oxide layer contains about 90 atom % of gallium with some additions of tin and zinc. The oxides obtained from the eutectic Ga⁻Sn⁻Zn liquid alloys appear to be nanocrystalline.

7.
Science ; 358(6361): 332-335, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29051372

ABSTRACT

Two-dimensional (2D) oxides have a wide variety of applications in electronics and other technologies. However, many oxides are not easy to synthesize as 2D materials through conventional methods. We used nontoxic eutectic gallium-based alloys as a reaction solvent and co-alloyed desired metals into the melt. On the basis of thermodynamic considerations, we predicted the composition of the self-limiting interfacial oxide. We isolated the surface oxide as a 2D layer, either on substrates or in suspension. This enabled us to produce extremely thin subnanometer layers of HfO2, Al2O3, and Gd2O3 The liquid metal-based reaction route can be used to create 2D materials that were previously inaccessible with preexisting methods. The work introduces room-temperature liquid metals as a reaction environment for the synthesis of oxide nanomaterials with low dimensionality.

8.
ACS Nano ; 11(11): 10974-10983, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29045121

ABSTRACT

Atomically thin semiconductors are one of the fastest growing categories in materials science due to their promise to enable high-performance electronic and optical devices. Furthermore, a host of intriguing phenomena have been reported to occur when a semiconductor is confined within two dimensions. However, the synthesis of large area atomically thin materials remains as a significant technological challenge. Here we report a method that allows harvesting monolayer of semiconducting stannous oxide nanosheets (SnO) from the interfacial oxide layer of liquid tin. The method takes advantage of van der Waals forces occurring between the interfacial oxide layer and a suitable substrate that is brought into contact with the molten metal. Due to the liquid state of the metallic precursor, the surface oxide sheet can be delaminated with ease and on a large scale. The SnO monolayer is determined to feature p-type semiconducting behavior with a bandgap of ∼4.2 eV. Field effect transistors based on monolayer SnO are demonstrated. The synthetic technique is facile, scalable and holds promise for creating atomically thin semiconductors at wafer scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...