Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Microbiologyopen ; 9(11): e1124, 2020 11.
Article in English | MEDLINE | ID: mdl-33306280

ABSTRACT

Bacterial nitric oxide (NO) synthases (bNOS) play diverse and important roles in microbial physiology, stress resistance, and virulence. Although bacterial and mammalian NOS enzymes have been well-characterized, comparatively little is known about the prevalence and function of NOS enzymes in Archaea. Analysis of archaeal genomes revealed that highly conserved bNOS homologs were restricted to members of the Halobacteria. Of these, Natronomonas pharaonis NOS (npNOS) was chosen for further characterization. NO production was confirmed in heterologously expressed His-tagged npNOS by coupling nitrite production from N-hydroxy-L-arginine in an H2O2-supported reaction. Additionally, the nos gene was successfully targeted and disrupted to create a Nmn. pharaonis nos mutant by adapting an established Natrialba magadii transformation protocol. Genome re-sequencing of this mutant revealed an additional frameshift in a putative cation-acetate symporter gene, which could contribute to altered acetate metabolism in the nos mutant. Inactivation of Nmn. pharaonis nos was also associated with several phenotypes congruent with bacterial nos mutants (altered growth, increased oxygen consumption, increased pigment, increased UV susceptibility), suggesting that NOS function may be conserved between bacteria and archaea. These studies are the first to describe genetic inactivation and characterization of a Nmn. pharaonis gene and provides enhanced tools for probing its physiology.


Subject(s)
Genome, Archaeal/genetics , Halobacteriaceae/enzymology , Halobacteriaceae/genetics , Nitric Oxide Synthase/genetics , Nitric Oxide/biosynthesis , Acetates/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Nitric Oxide Synthase/analysis , Oxidation-Reduction , Oxygen Consumption/physiology
2.
Infect Immun ; 87(2)2019 02.
Article in English | MEDLINE | ID: mdl-30420450

ABSTRACT

Staphylococcus aureus nitric oxide synthase (saNOS) is a major contributor to virulence, stress resistance, and physiology, yet the specific mechanism(s) by which saNOS intersects with other known regulatory circuits is largely unknown. The SrrAB two-component system, which modulates gene expression in response to the reduced state of respiratory menaquinones, is a positive regulator of nos expression. Several SrrAB-regulated genes were also previously shown to be induced in an aerobically respiring nos mutant, suggesting a potential interplay between saNOS and SrrAB. Therefore, a combination of genetic, molecular, and physiological approaches was employed to characterize a nos srrAB mutant, which had significant reductions in the maximum specific growth rate and oxygen consumption when cultured under conditions promoting aerobic respiration. The nos srrAB mutant secreted elevated lactate levels, correlating with the increased transcription of lactate dehydrogenases. Expression of nitrate and nitrite reductase genes was also significantly enhanced in the nos srrAB double mutant, and its aerobic growth defect could be partially rescued with supplementation with nitrate, nitrite, or ammonia. Furthermore, elevated ornithine and citrulline levels and highly upregulated expression of arginine deiminase genes were observed in the double mutant. These data suggest that a dual deficiency in saNOS and SrrAB limits S. aureus to fermentative metabolism, with a reliance on nitrate assimilation and the urea cycle to help fuel energy production. The nos, srrAB, and nos srrAB mutants showed comparable defects in endothelial intracellular survival, whereas the srrAB and nos srrAB mutants were highly attenuated during murine sepsis, suggesting that SrrAB-mediated metabolic versatility is dominant in vivo.


Subject(s)
Bacterial Proteins , Nitric Oxide Synthase/metabolism , Repressor Proteins , Staphylococcus aureus , Virulence/physiology , Bacterial Proteins/genetics , Cells, Cultured , Gene Expression Regulation, Bacterial/physiology , Mutation , Nitrates/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase/genetics , Oxidative Stress/physiology , Repressor Proteins/genetics , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Transcription, Genetic , Virulence/genetics
3.
RNA Biol ; 15(4-5): 508-517, 2018.
Article in English | MEDLINE | ID: mdl-28726545

ABSTRACT

Endoribonuclease toxins (ribotoxins) are produced by bacteria and fungi to respond to stress, eliminate non-self competitor species, or interdict virus infection. PrrC is a bacterial ribotoxin that targets and cleaves tRNALysUUU in the anticodon loop. In vitro studies suggested that the post-transcriptional modification threonylcarbamoyl adenosine (t6A) is required for PrrC activity but this prediction had never been validated in vivo. Here, by using t6A-deficient yeast derivatives, it is shown that t6A is a positive determinant for PrrC proteins from various bacterial species. Streptococcus mutans is one of the few bacteria where the t6A synthesis gene tsaE (brpB) is dispensable and its genome encodes a PrrC toxin. We had previously shown using an HPLC-based assay that the S. mutans tsaE mutant was devoid of t6A. However, we describe here a novel and a more sensitive hybridization-based t6A detection method (compared to HPLC) that showed t6A was still present in the S. mutans ΔtsaE, albeit at greatly reduced levels (93% reduced compared with WT). Moreover, mutants in 2 other S. mutans t6A synthesis genes (tsaB and tsaC) were shown to be totally devoid of the modification thus confirming its dispensability in this organism. Furthermore, analysis of t6A modification ratios and of t6A synthesis genes mRNA levels in S. mutans suggest they may be regulated by growth phase.


Subject(s)
Adenosine/analogs & derivatives , Bacterial Proteins/genetics , Endoribonucleases/genetics , RNA Processing, Post-Transcriptional , RNA, Transfer, Lys/genetics , Streptococcus mutans/genetics , Adenosine/deficiency , Adenosine/genetics , Anticodon/chemistry , Anticodon/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Endoribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Nucleic Acid Conformation , Protein Biosynthesis , RNA, Transfer, Lys/metabolism , Streptococcus mutans/metabolism
4.
NPJ Microgravity ; 3: 4, 2017.
Article in English | MEDLINE | ID: mdl-28649626

ABSTRACT

Astronauts have been previously shown to exhibit decreased salivary lysozyme and increased dental calculus and gingival inflammation in response to space flight, host factors that could contribute to oral diseases such as caries and periodontitis. However, the specific physiological response of caries-causing bacteria such as Streptococcus mutans to space flight and/or ground-based simulated microgravity has not been extensively investigated. In this study, high aspect ratio vessel S. mutans simulated microgravity and normal gravity cultures were assessed for changes in metabolite and transcriptome profiles, H2O2 resistance, and competence in sucrose-containing biofilm media. Stationary phase S. mutans simulated microgravity cultures displayed increased killing by H2O2 compared to normal gravity control cultures, but competence was not affected. RNA-seq analysis revealed that expression of 153 genes was up-regulated ≥2-fold and 94 genes down-regulated ≥2-fold during simulated microgravity high aspect ratio vessel growth. These included a number of genes located on extrachromosomal elements, as well as genes involved in carbohydrate metabolism, translation, and stress responses. Collectively, these results suggest that growth under microgravity analog conditions promotes changes in S. mutans gene expression and physiology that may translate to an altered cariogenic potential of this organism during space flight missions.

SELECTION OF CITATIONS
SEARCH DETAIL
...