Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Res Vet Sci ; 172: 105249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579633

ABSTRACT

The effect of salinomycin sodium alone and in combination with functional oils on performance and microbiota of broiler infected Eimeria were evaluated. 512 broilers were randomly assigned to 4 treatments (8 replicates, 16 birds/pen): a Control group (any additives); Ionophore group: salinomycin supplementation at 66 ppm (SS66); Ionophore +0.075% Functional oil (FO) group (SS66 + FO supplementation at 750 ppm); and Ionophore +0.10% FO group (SS66 + FO supplementation at 1000 ppm). At 14 days of age, birds were gavaged with 1 mL of a saline solution containing sporulated oocysts of E. tenella, E. acervulina and E. maxima. Performance indices were measured weekly. At 28 days, intestinal content was collected for microbiota analysis. Broilers of Control group presented the worst performance indices. Broilers of Ionophore + FO (0.075% and 0.10%) groups exhibited a higher BW at 28 days of age. The supplementation of Ionophore +0.075% FO resulted in a higher relative proportion of Firmicutes and a lower proportion of Actinobacteria in the ileum-jejunum. Lactobacillaceae was the dominant family in the jejunal, and ileal microbiotas of broilers fed diets supplemented with Ionophore, Ionophore +0.075% FO and Ionophore +0.10% FO. The supplementation of ionophore yielded higher numbers of Lactobacillaceae, Enterobactereaceae and Cloritridiaceae in the cecal. Ionophore associated with FO controlled the Lactobacillaceae, Enterobactereaceae and Cloritridiaceae families present in the cecum. Therefore, the combination of salinomycin with functional oil showed synergistic effect on performance and modulation of intestinal microbiota of broilers challenged with Eimeria.


Subject(s)
Animal Feed , Chickens , Coccidiosis , Diet , Dietary Supplements , Eimeria , Gastrointestinal Microbiome , Polyether Polyketides , Poultry Diseases , Pyrans , Animals , Chickens/growth & development , Pyrans/pharmacology , Pyrans/administration & dosage , Coccidiosis/veterinary , Coccidiosis/drug therapy , Coccidiosis/parasitology , Gastrointestinal Microbiome/drug effects , Eimeria/drug effects , Poultry Diseases/parasitology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Animal Feed/analysis , Diet/veterinary , Random Allocation , Ionophores/pharmacology , Ionophores/administration & dosage , Coccidiostats/pharmacology , Coccidiostats/administration & dosage , Male
2.
Front Vet Sci ; 8: 750733, 2021.
Article in English | MEDLINE | ID: mdl-34778435

ABSTRACT

Pig and poultry production systems have reached high-performance levels over the last few decades. However, there is still room for improvement when it comes to their environmental sustainability. This issue is even more relevant due to the growing demand for food demand since this surplus food production needs to be met at an affordable cost with minimum impact on the environment. This study presents a systematic review of peer-reviewed manuscripts that investigated the environmental impacts associated with pig and poultry production. For this purpose, independent reviews were performed and two databases were constructed, one for each production system. Previous studies published in peer-reviewed journals were considered for the databases if the method of life cycle assessment (LCA) was applied to pig (pork meat) or poultry (broiler meat or table eggs) production to estimate at least the potential effects of climate change, measured as CO2-eq. Studies considering the cradle-to-farm gate were considered, as well as those evaluating processes up to the slaughterhouse or processor gate. The pig database comprised 55 studies, while 30 publications were selected for the poultry database. These studies confirmed feeding (which includes the crop cultivation phase, manufacturing processes, and transportation) as the main contributor to the environmental impact associated with pig and poultry production systems. Several studies evaluated feeding strategies, which were indicated as viable alternatives to mitigate the environmental footprint associated with both production chains. In this study, precision feeding techniques are highlighted given their applicability to modern pig and poultry farming. These novel feeding strategies are good examples of innovative strategies needed to break paradigms, improve resource-use efficiency, and effectively move the current productive scenario toward more sustainable livestock systems.

3.
J Anim Sci ; 98(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32954424

ABSTRACT

This study investigated the effects of dietary osteopontin (OPN)-enriched algal protein on growth, immune status, and fecal fermentation profiles of weaned pigs challenged with a live infection of F18-fimbriated enterotoxigenic E. coli (ETEC). At 21 d of age, 54 pigs (5.95 ± 0.28 kg BW; blocked by BW) were allotted to 1 of 3 experimental groups combining dietary and health statuses. A control diet, containing 1% wild-type algal protein, was fed to both sham-inoculated (NC) and ETEC-inoculated (PC) pigs, while the test diet contained 1% OPN-enriched algal protein as fed only to ETEC-inoculated pigs (OA). All pigs received their assigned dietary treatment starting at study initiation to permit a 10-d acclimation period prior to inoculation. Growth performance, fecal dry matter, as well as hematological, histopathological, immune, and microbiota outcomes were analyzed by ANOVA, where treatment and time were considered as fixed effects and pig as a random effect; significance was accepted at P < 0.05. Overall, ETEC-inoculated pigs (PC and OA) exhibited decreased (P < 0.05) ADG and G:F, as well as increased (P < 0.05) peripheral blood helper T-cells and total leukocyte counts, compared with NC pigs during the postinoculation period. The OA treatment also elicited the highest (P < 0.05) concentrations of circulating tumor necrosis factor-α and volatile fatty acid concentrations in luminal contents at various postinoculation time-points, compared with other treatments. A principal coordinate analysis based on Unifrac weighted distances indicated that NC and OA groups had similar overall bacterial community structures, while PC pigs exhibited greater diversity, but infection status had no impact on α-diversity. Osteopontin-specific effects on microbial community structure included enrichment within Streptococcus and Blautia genera and decreased abundance of 12 other genera as compared with PC pigs. Overall, ETEC-infected pigs receiving 1% OPN-enriched algal protein exhibited changes immunity, inflammatory status, and colonic microbial community structure that may benefit weanling pigs experiencing F18 ETEC infection.


Subject(s)
Algal Proteins/pharmacology , Animal Feed/analysis , Diet/veterinary , Enterotoxigenic Escherichia coli , Osteopontin/pharmacology , Swine Diseases/microbiology , Algal Proteins/administration & dosage , Animals , Diarrhea/microbiology , Diarrhea/veterinary , Escherichia coli Infections/microbiology , Escherichia coli Infections/therapy , Escherichia coli Infections/veterinary , Fatty Acids, Volatile , Feces/microbiology , Fermentation , Nutritional Support/veterinary , Osteopontin/administration & dosage , Swine , Swine Diseases/therapy , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...