Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Sci Rep ; 14(1): 11549, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773318

ABSTRACT

Pediatric chronic kidney disease (CKD) is a clinical condition characterized by progressive renal function deterioration. CKD diagnosis is based on glomerular filtration rate, but its reliability is limited, especially at the early stages. New potential biomarkers (citrulline (CIT), symmetric dimethylarginine (SDMA), S-adenosylmethionine (SAM), n-butyrylcarnitine (nC4), cis-4-decenoylcarnitine, sphingosine-1-phosphate and bilirubin) in addition to creatinine (CNN) have been proposed for early diagnosis. To verify the clinical value of these biomarkers we performed a comprehensive targeted metabolomics study on a representative cohort of CKD and healthy pediatric patients. Sixty-seven children with CKD and forty-five healthy children have been enrolled in the study. Targeted metabolomics based on liquid chromatography-triple quadrupole mass spectrometry has been used for serum and plasma samples analysis. Univariate data analysis showed statistically significant differences (p < 0.05) in the concentration of CNN, CIT, SDMA, and nC4 among healthy and CKD pediatric patients. The predictive ability of the proposed biomarkers was also confirmed through specificity and sensitivity expressed in Receiver Operating Characteristic curves (AUC = 0.909). In the group of early CKD pediatric patients, AUC of 0.831 was obtained, improving the diagnostic reliability of CNN alone. Moreover, the models built on combined CIT, nC4, SDMA, and CNN allowed to distinguish CKD patients from healthy control regardless of blood matrix type (serum or plasma). Our data demonstrate potential biomarkers in the diagnosis of early CKD stages.


Subject(s)
Biomarkers , Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/blood , Biomarkers/blood , Child , Female , Male , Child, Preschool , Adolescent , Glomerular Filtration Rate , Metabolomics/methods , ROC Curve , Case-Control Studies , Creatinine/blood , Arginine/analogs & derivatives
2.
Int J Biol Macromol ; 269(Pt 2): 131926, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38688344

ABSTRACT

Circulating cell-free microRNAs (miRNAs) are promising biomarkers for medical decision-making. Suitable endogenous controls are essential to ensure reproducibility. We aimed to identify and validate endogenous reference miRNAs for qPCR data normalization in samples from SARS-CoV-2-infected hospitalized patients. We used plasma samples (n = 170) from COVID-19 patients collected at hospital admission (COVID-Ponent project, www.clinicaltrials.gov/NCT04824677). First, 179 miRNAs were profiled using RT-qPCR. After stability assessment, candidates were validated using the same methodology. miRNA stability was analyzed using the geNorm, NormFinder and BestKeeper algorithms. Stability was further evaluated using an RNA-seq dataset derived from COVID-19 hospitalized patients, along with plasma samples from patients with critical COVID-19 profiled using RT-qPCR. In the screening phase, after strict control of expression levels, stability assessment selected eleven candidates (miR-17-5p, miR-20a-5p, miR-30e-5p, miR-106a-5p, miR-151a-5p, miR-185-5p, miR-191-5p, miR-423-3p, miR-425-5p, miR-484 and miR-625-5p). In the validation phase, all algorithms identified miR-106a-5p and miR-484 as top endogenous controls. No association was observed between these miRNAs and clinical or sociodemographic characteristics. Both miRNAs were stably detected and showed low variability in the additional analyses. In conclusion, a 2-miRNA panel composed of miR-106a-5p and miR-484 constitutes a first-line normalizer for miRNA-based biomarker development using qPCR in hospitalized patients infected with SARS-CoV-2.

3.
Food Funct ; 15(9): 5118-5131, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38682277

ABSTRACT

This study investigated the impact of in vivo available colon-mango (poly)phenols on stress-induced impairment of intestinal barrier function. Caco-2/HT29-MTX cells were incubated with six extracts of ileal fluid collected pre- and 4-8 h post-mango consumption before being subjected to inflammatory stress. (Poly)phenols in ileal fluids were analysed by UHPLC-HR-MS. Epithelial barrier function was monitored by measurement of trans-epithelial electrical resistance (TEER) and the production of selected inflammatory markers (interleukin-8 (IL-8) and nitric oxide (NO)) and the major mucin of the mucosal layer (MUC2). Post-mango intake ileal fluids contained principally benzoic acids, hydroxybenzenes and galloyl derivatives. There was a high interindividual variability in the levels of these compounds, which was reflected by the degree of variability in the protective effects of individual ileal extracts on inflammatory changes in the treated cell cultures. The 24 h treatment with non-cytotoxic doses of extracts of 4-8 h post-mango intake ileal fluid significantly reduced the TEER decrease in monolayers treated with the inflammatory cytomix. This effect was not associated with changes in IL-8 expression and secretion or claudine-7 expression. The mango derived-ileal fluid extract (IFE) also mitigated cytomix-dependent nitrite secretion, as a proxy of NO production, and the MUC2 reduction observed upon the inflammatory challenge. These insights shed light on the potential protective effect of mango (poly)phenols on the intestinal barrier exposed to inflammatory conditions.


Subject(s)
Interleukin-8 , Intestinal Mucosa , Mangifera , Mucin-2 , Humans , Mangifera/chemistry , Caco-2 Cells , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Interleukin-8/metabolism , Mucin-2/metabolism , HT29 Cells , Polyphenols/pharmacology , Colon/drug effects , Colon/metabolism , Nitric Oxide/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Inflammation/drug therapy , Intestinal Barrier Function
4.
Cell Calcium ; 119: 102852, 2024 May.
Article in English | MEDLINE | ID: mdl-38412581

ABSTRACT

In skeletal muscle (SM), inward Ca2+-currents have no apparent role in excitation-contraction coupling (e-c coupling), however the Ca2+-channel blocker can affect twitch and tetanic muscle in mammalian SM. Experiments were conducted to study how diltiazem (DLZ) facilitates e-c coupling and inhibits contraction. 1) In complete Extensor Digitorum Longus (EDL) muscle and single intact fibres, 0.03 mM DLZ causes twitch potentiation and decreases force during tetanic activity, with increased fatigue. 2) In split open fibres isolated from EDL fibres, DLZ inhibits sarcoplasmic reticulum (SR) Ca2+-loading in a dose-dependent manner and has a potentiating effect on caffeine-induced SR Ca2+-release. 3) In isolated light SR (LSR) vesicles, SERCA1 hydrolytic activity is not affected by DLZ up to 0.2 mM. However, ATP-dependent Ca2+-uptake was inhibited in a dose-dependent manner at a concentration where e-c coupling is changed. 4) The passive Ca2+-efflux from LSR was reduced by half with 0.03 mM diltiazem, indicating that SR leaking does not account for the decreased Ca2+-uptake. 5) The denaturation profile of the SERCA Ca2+-binding domain has lower thermal stability in the presence of DLZ in a concentration-dependent manner, having no effect on the nucleotide-binding domain. We conclude that the effect of DLZ on SM is exerted by crossing the sarcolemma and interacting directly with the SERCA Ca2+-binding domain, affecting SR Ca2+-loading during relaxation, which has a consequence on SM contractility. Diltiazem effect on SM could be utilized as a tool to understand SM e-c coupling and muscle fatigue.


Subject(s)
Diltiazem , Muscle, Skeletal , Animals , Diltiazem/pharmacology , Sarcoplasmic Reticulum , Muscle Fatigue , Caffeine/pharmacology , Mammals , Muscle Contraction , Calcium/pharmacology
5.
Int J Infect Dis ; 140: 132-135, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311026

ABSTRACT

OBJECTIVES: Identifying patients with COVID-19 who are at risk of poor evolution is key to early decide on their hospitalization. We evaluated the combined impact of nucleocapsid (N)-antigenemia profiled by a rapid test and antibodies against the S1 subunit of the SARS-CoV S protein (S1) on the hospitalization risk of patients with COVID-19. METHODS: N-antigenemia and anti-S1 antibodies were profiled at admission to the emergency department in 146 patients with COVID-19 using the Panbio® antigen Rapid Test and the SARS-CoV-2 immunoglobulin G II Quant/SARS-CoV-2 immunoglobulin G assay from Abbott. A multivariable analysis was used to evaluate the impact of these factors on hospitalization. RESULTS: Patients with a positive N-antigen test in plasma and anti-S1 levels <2821 arbitrary units/mL needed hospitalization more frequently (20 of 23, 87%). A total of 20 of 71 (28.2%) of those showing a negative N-antigen test and anti-S1 ≥2821 arbitrary units/mL were hospitalized for 18 of 52 (34.6%) of the patients with only one of these conditions. Patients with a positive N-antigen test and low antibody levels showed an odds ratio, 95% confidence interval, and P-value for hospitalization of 18.21, 2.74-121.18, and 0.003, respectively, and exhibited the highest mortality (30.4%). CONCLUSIONS: Simultaneous profiling of a rapid N-antigen test in plasma and anti-S1 levels could help to early identify patients with COVID-19 needing hospitalization.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin G , Hospitalization
6.
Diagn Microbiol Infect Dis ; 108(1): 116075, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37837915

ABSTRACT

We used droplet digital PCR (ddPCR) assays to detect/quantify DNA from Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus spp. in blood samples. Bacterial DNA from clinical strains (4 < n < 12) was extracted, quantified and diluted (10-0.0001 ng/µL) and ddPCR assays were performed in triplicate. These ddPCR assays showed low replication variability, low detection limit (1-0.1 pg/µL), and genus/species specificity. ddPCR assays were also used to quantify bacterial DNA obtained from spiked blood (1 × 104-1 CFU/mL) of each bacterial genus/species. Comparison between ddPCR assays and bacterial culture was performed by Pearson correlation. There was an almost perfect correlation (r ≥ 0.997, P ≤ 0.001) between the number of CFU/mL from bacterial culture and the number of gene copies/mL detected by ddPCR. The time from sample preparation to results was determined to be 3.5 to 4 hours. The results demonstrated the quantification capacity and specificity of the ddPCR assays to detect/quantify 4 of the most important bloodstream infection (BSI) bacterial pathogens directly from blood. SIGNIFICANCE AND IMPACT: This pilot study results support the potential of ddPCR for the diagnosis and/or severity stratification of BSI. Applied to patients' blood samples it can improve diagnosis and diminish sample-to-results time, improving patient care.


Subject(s)
Escherichia coli , Sepsis , Humans , DNA, Bacterial/genetics , Pilot Projects , Polymerase Chain Reaction/methods , Escherichia coli/genetics , Staphylococcus aureus/genetics
7.
Respir Res ; 24(1): 159, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37328754

ABSTRACT

BACKGROUND: The identification of critically ill COVID-19 patients at risk of fatal outcomes remains a challenge. Here, we first validated candidate microRNAs (miRNAs) as biomarkers for clinical decision-making in critically ill patients. Second, we constructed a blood miRNA classifier for the early prediction of adverse outcomes in the ICU. METHODS: This was a multicenter, observational and retrospective/prospective study including 503 critically ill patients admitted to the ICU from 19 hospitals. qPCR assays were performed in plasma samples collected within the first 48 h upon admission. A 16-miRNA panel was designed based on recently published data from our group. RESULTS: Nine miRNAs were validated as biomarkers of all-cause in-ICU mortality in the independent cohort of critically ill patients (FDR < 0.05). Cox regression analysis revealed that low expression levels of eight miRNAs were associated with a higher risk of death (HR from 1.56 to 2.61). LASSO regression for variable selection was used to construct a miRNA classifier. A 4-blood miRNA signature composed of miR-16-5p, miR-192-5p, miR-323a-3p and miR-451a predicts the risk of all-cause in-ICU mortality (HR 2.5). Kaplan‒Meier analysis confirmed these findings. The miRNA signature provides a significant increase in the prognostic capacity of conventional scores, APACHE-II (C-index 0.71, DeLong test p-value 0.055) and SOFA (C-index 0.67, DeLong test p-value 0.001), and a risk model based on clinical predictors (C-index 0.74, DeLong test-p-value 0.035). For 28-day and 90-day mortality, the classifier also improved the prognostic value of APACHE-II, SOFA and the clinical model. The association between the classifier and mortality persisted even after multivariable adjustment. The functional analysis reported biological pathways involved in SARS-CoV infection and inflammatory, fibrotic and transcriptional pathways. CONCLUSIONS: A blood miRNA classifier improves the early prediction of fatal outcomes in critically ill COVID-19 patients.


Subject(s)
COVID-19 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Prospective Studies , Retrospective Studies , COVID-19/diagnosis , COVID-19/genetics , Critical Illness , Biomarkers , Intensive Care Units
8.
Food Funct ; 14(11): 5023-5031, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37194921

ABSTRACT

Onion (Allium cepa L.) and its newly derived product "black onion" are characterised by the presence of compounds with potential bioactivity, particularly organosulfur compounds (OSCs). However, little is known about the metabolism, distribution, and excretion of these compounds as they pass through the gastrointestinal tract. This study monitored healthy subjects after an acute intake of black onion and analysed the excretion of OSCs using UHPLC-HRMS. A total of 31 OSCs were detected in urine after the acute ingestion of black onion, the main components being S-methyl-L-cysteine sulfoxide (methiin) (13.6 ± 3.9 µmol), isoalliin (12.4 ± 4.7 µmol) and S-propyl-L-cysteine (deoxypropiin) (3.1 ± 0.7 µmol). Moreover, N-acetylated metabolites of the major OSCs detected in black onion, namely, N-acetyl-S-(1-propenyl)-L-cysteine sulfoxide (NAS1PCS) and N-acetyl-S-(1-propenyl)-L-cysteine (NAS1PC), were found in urine after black onion consumption. The N-acetylation reaction takes place in the kidneys and liver, and metabolism pathways are proposed to explain the excretion of OSCs in urine. The basis of the identification of OSCs as urinary metabolites after black onion consumption is described for the first time and provides the basis for further research.


Subject(s)
Cysteine , Onions , Humans , Sulfur Compounds , Sulfoxides/metabolism , Eating
9.
Antioxidants (Basel) ; 12(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37107300

ABSTRACT

The consumption of black garlic has been related to a decreased risk of many human diseases due to the presence of phytochemicals such as organosulfur compounds (OSCs). However, information on the metabolization of these compounds in humans is limited. By means of ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS), this study aims to determine the OSCs and their metabolites excreted in urine 24 h after an acute intake of 20 g of black garlic by healthy humans. Thirty-three OSCs were identified and quantified, methiin (17,954 ± 6040 nmol), isoalliin (15,001 ± 9241 nmol), S-(2-carboxypropyl)-L-cysteine (8804 ± 7220 nmol) and S-propyl-L-cysteine (deoxypropiin) (7035 ± 1392 nmol) being the main ones. Also detected were the metabolites N-acetyl-S-allyl-L-cysteine (NASAC), N-acetyl-S-allyl-L-cysteine sulfoxide (NASACS) and N-acetyl-S-(2-carboxypropyl)-L-cysteine (NACPC), derived from S-allyl-L-cysteine (SAC), alliin and S-(2-carboxypropyl)-L-cysteine, respectively. These compounds are potentially N-acetylated in the liver and kidney. The total excretion of OSCs 24 h after the ingestion of black garlic was 64,312 ± 26,584 nmol. A tentative metabolic pathway has been proposed for OSCs in humans.

10.
Clin Microbiol Infect ; 28(10): 1391.e1-1391.e5, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35654316

ABSTRACT

OBJECTIVES: To evaluate if the detection of N antigen of SARS-CoV-2 in plasma by a rapid lateral flow test predicts 90-day mortality in COVID-19 patients hospitalized at the wards. METHODS: The presence of N-antigenemia was evaluated in the first 36 hours after hospitalization in 600 unvaccinated COVID-19 patients, by using the Panbio COVID-19 Ag Rapid Test Device from Abbott (Abbott Laboratories Inc., Chicago, IL, USA). The impact of N-antigenemia on 90-day mortality was assessed by multivariable Cox regression analysis. RESULTS: Prevalence of N-antigenemia at hospitalization was higher in nonsurvivors (69% (82/118) vs. 52% (250/482); p < 0.001). The patients with N-antigenemia showed more frequently RNAemia (45.7% (148/324) vs. 19.8% (51/257); p < 0.001), absence of anti-SARS-CoV-2 N antibodies (80.7% (264/327) vs. 26.6% (69/259); p < 0.001) and absence of S1 antibodies (73.4% (240/327) vs. 23.6% (61/259); p < 0.001). The patients with antigenemia showed more frequently acute respiratory distress syndrome (30.1% (100/332) vs. 18.7% (50/268); p = 0.001) and nosocomial infections (13.6% (45/331) vs. 7.9% (21/267); p = 0.026). N-antigenemia was a risk factor for increased 90-day mortality in the multivariable analysis (HR, 1.99 (95% CI,1.09-3.61), whereas the presence of anti-SARS-CoV-2 N-antibodies represented a protective factor (HR, 0.47 (95% CI, 0.26-0.85). DISCUSSION: The presence of N-antigenemia or the absence of anti-SARS-CoV-2 N-antibodies after hospitalization is associated to increased 90-day mortality in unvaccinated COVID-19 patients. Detection of N-antigenemia by using lateral flow tests is a quick, widely available tool that could contribute to early identify those COVID-19 patients at risk of deterioration.


Subject(s)
COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Prospective Studies , SARS-CoV-2
11.
J Agric Food Chem ; 70(12): 3666-3677, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35293213

ABSTRACT

The beneficial properties associated with garlic consumption have been related to the presence of bioactive compounds including (poly)phenols and organosulfur compounds (OSCs). This study aims to assess the effect of in vitro colonic fermentation on fresh and black garlic by determining the transformation of these compounds through ultrahigh-performance liquid chromatography coupled to mass spectrometry with a linear ion trap (uHPLC-LIT-MS). Colonic fermentation had a similar influence on the phenolic content of fresh and black garlic, with total respective decreases of 43.8% and 41.7%. Meanwhile, fermentation resulted in a significant decrease (33%) in OSCs in black garlic. Compounds such as 4-hydroxybenzoic acid, S-allylcysteine (SAC), and methionine sulfoxide were the phenolic compounds and OSCs with the highest concentration in fresh and black garlic after the in vitro fermentation. These compounds, potentially present at the colonic level, might be responsible for the systemic health benefits associated with the consumption of black and fresh garlic.


Subject(s)
Garlic , Antioxidants , Fermentation , Garlic/chemistry , Phenols , Sulfur Compounds/chemistry
12.
Food Funct ; 13(8): 4432-4444, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35302133

ABSTRACT

The health properties related to onion intake are attributed mainly to the presence of bioactive compounds, particularly phenolic and organosulfur compounds (OSCs). The aim of this study was to investigate, for the first time, the effect of an in vitro colonic fermentation on the stability of phenolic and OSCs of fresh and black onion by ultra-high-performance liquid chromatography coupled with mass spectrometry with a linear ion trap (UHPLC-LIT-MS). Throughout colonic fermentation, fresh onion showed an increase in the total phenolic content of 45%, mainly due to an increase in the content of the flavonoid family, while the OSCs remained stable along the fermentation. Black onion presented a different behaviour, showing significant decreases in total (poly)phenol and OSC content, 22 and 48%, respectively. The main compounds found after the in vitro colonic fermentation of fresh onion were isorhamnetin (141 µmol L-1), quercetin (95 µmol L-1), 3,4-dihydroxybenzoic acid (53 µmol L-1), methionine sulfoxide (100 µmol L-1) and S-allylcysteine (SAC) (21.7 µmol L-1), whereas 3,4-dihydroxybenzoic acid (70 µmol L-1), 4-hydroxyphenylacetic acid (68 µmol L-1), methionine sulfoxide (82 µmol L-1) and S-propylmercapto-L-cysteine (SPMC) (10.1 µmol L-1) accounted for the highest concentrations of phenolics and OSCs in fermented black onion. These compounds, presumably present for their absorption and action at the colonic level, could be related to the health benefits of regular consumption of fresh and black onion.


Subject(s)
Flavonoids , Onions , Antioxidants/pharmacology , Fermentation , Flavonoids/chemistry , Onions/chemistry , Phenols , Sulfur Compounds
13.
J Intern Med ; 291(2): 232-240, 2022 02.
Article in English | MEDLINE | ID: mdl-34611927

ABSTRACT

BACKGROUND: Anti-SARS-CoV-2 S antibodies prevent viral replication. Critically ill COVID-19 patients show viral material in plasma, associated with a dysregulated host response. If these antibodies influence survival and viral dissemination in ICU-COVID patients is unknown. PATIENTS/METHODS: We studied the impact of anti-SARS-CoV-2 S antibodies levels on survival, viral RNA-load in plasma, and N-antigenaemia in 92 COVID-19 patients over ICU admission. RESULTS: Frequency of N-antigenaemia was >2.5-fold higher in absence of antibodies. Antibodies correlated inversely with viral RNA-load in plasma, representing a protective factor against mortality (adjusted HR [CI 95%], p): (S IgM [AUC ≥ 60]: 0.44 [0.22; 0.88], 0.020); (S IgG [AUC ≥ 237]: 0.31 [0.16; 0.61], <0.001). Viral RNA-load in plasma and N-antigenaemia predicted increased mortality: (N1-viral load [≥2.156 copies/ml]: 2.25 [1.16; 4.36], 0.016); (N-antigenaemia: 2.45 [1.27; 4.69], 0.007). CONCLUSIONS: Low anti-SARS-CoV-2 S antibody levels predict mortality in critical COVID-19. Our findings support that these antibodies contribute to prevent systemic dissemination of SARS-CoV-2.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/blood , COVID-19 , COVID-19/immunology , COVID-19/mortality , Critical Illness , Humans , RNA, Viral/blood , SARS-CoV-2
14.
Support Care Cancer ; 30(3): 2755-2766, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34825982

ABSTRACT

PURPOSE: To characterize and compare both the outcome and cost of treatment of outpatient (OP) and inpatient (IP) ifosfamide therapy. METHODS: A single-center retrospective chart review of patients 18 years and older receiving ifosfamide therapy. The primary endpoint compares and evaluates the side effect profiles of ifosfamide-treated patients in the OP/IP settings. The adverse event grading system was characterized using the CTCAE Version 5.0. The highest grade was documented per cycle. The secondary endpoint of this study compares the costs of OP/IP therapy. It was assumed that the cost of medication was equivalent for IP/OP treatments. The cost saved with OP administration was determined by the average cost of hospital stay for IP admission. RESULTS: Ifosfamide therapy of 86 patients (57 OP, 29 IP) was reviewed. The predominant OP regimens were doxorobucin-ifosfamide-mesna (AIM) with 43.9% and ifosfamide-etoposide (IE) with 29.8%. Grade 4 anemia, thrombocytopenia, and neutropenia were most frequent in IP vs OP therapies (22.9% IP vs 4.3% OP, 21.6% IP vs 9.2% OP, and 22.8% IP vs 19.6% OP respectively). Neutropenic fever (NF) occurred in 20 OP patients which were predominantly treated with AIM or IE and led to average hospital stay of 6 days. Neurotoxicity, treated with methylene blue (MB) occurred in 4 OP patients. OP therapy saved a total of 783 hospital days, leading to a cost savings of $2,103,921. CONCLUSIONS: Transitioning ifosfamide to the OP setting is feasible for academic and community infusion centers with the OP administration being safe, well-tolerated, and associated with decreased total cost of care. The current processes allow for safe transition of chemotherapy of chemotherapy under times of COVID.


Subject(s)
COVID-19 , Ifosfamide , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cost Savings , Etoposide , Humans , Ifosfamide/adverse effects , Retrospective Studies , SARS-CoV-2
15.
Rev. cuba. med. mil ; 50(4)dic. 2021.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1408758

ABSTRACT

RESUMEN Existe un número elevado de sistemas de clasificación, en pacientes con pie diabético. La importancia de una correcta clasificación de las lesiones, determina el tratamiento a realizar y puede aportar datos sobre el pronóstico de los pacientes respecto a posibles amputaciones. En los últimos años la tendencia es al desarrollo de sistemas más complejos, con uso de la tecnología. La clasificación de McCook y otros, ha sido la base para el tratamiento de pacientes con pie diabético en Cuba; a esta se sumó posteriormente, la clasificación hemodinámica y al comenzar a aplicar el Heberprot-P, se asoció la clasificación de Wagner, pero siempre con la óptica de McCook. Esta visión inicial y su posterior desarrollo han llevado a Cuba a lograr cifras de amputaciones mínimas, diferente a lo que ocurre en otros países. Este trabajo expresa la opinión de la autora acerca de los resultados del uso de las clasificaciones utilizadas en Cuba.


ABSTRACT There is a large number of classification systems in patients with diabetic foot. The importance of a correct classification of injuries determines the treatment to be carried out and can provide data on the prognosis of patients regarding possible amputations. In recent years the trend is towards the development of more complex systems, with the use of technology. The McCook et al. classification has been the basis for the treatment of patients with diabetic foot in Cuba; To this, the hemodynamic classification was added later and when the Heberprot-P began to be applied, the Wagner classification was associated, but always with McCook's optics. This initial vision and its subsequent development have led Cuba to achieve minimal amputation figures, different from what happens in other countries. This work expresses the author's opinion about the results using the classifications used in Cuba.

16.
Bone ; 151: 116021, 2021 10.
Article in English | MEDLINE | ID: mdl-34087386

ABSTRACT

The age at which astronauts experience microgravity is a critical consideration for skeletal health and similarly has clinical relevance for musculoskeletal disuse on Earth. While astronauts are extensively studied for bone and other physiological changes, rodent studies enable direct evaluation of skeletal changes with microgravity. Yet, mouse spaceflight studies have predominately evaluated tissues from young, growing mice. We evaluated bone microarchitecture in tibiae and femurs from Young (9-week-old) and Mature (32-weeks-old) female, C57BL/6N mice flown in microgravity for ~2 and ~3 weeks, respectively. Microgravity-induced changes were both compartment- and site-specific. Changes were greater in trabecular versus cortical bone in Mature mice exposed to microgravity (-40.0% Tb. BV/TV vs -4.4% Ct. BV/TV), and bone loss was greater in the proximal tibia as compared to the distal femur. Trabecular thickness in Young mice increased by +25.0% on Earth and no significant difference following microgravity. In Mature mice exposed to microgravity, trabecular thickness rapidly decreased (-24.5%) while no change was detected in age-matched mice that were maintained on Earth. Mature mice exposed to microgravity experienced greater bone loss than Young mice with net skeletal growth. Moreover, machine learning classification models confirmed that microgravity exposure-driven decrements in trabecular microarchitecture and cortical structure occurred disproportionately in Mature than in Young mice. Our results suggest that age of disuse onset may have clinical implications in osteoporotic or other at-risk populations on Earth and may contribute to understanding bone loss patterns in astronauts.


Subject(s)
Bone Diseases, Metabolic , Weightlessness , Animals , Bone Density , Female , Femur/diagnostic imaging , Mice , Mice, Inbred C57BL , Weightlessness/adverse effects
17.
Eur J Clin Invest ; 51(12): e13626, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34120332

ABSTRACT

BACKGROUND: Fever-7 is a test evaluating host mRNA expression levels of IFI27, JUP, LAX, HK3, TNIP1, GPAA1 and CTSB in blood able to detect viral infections. This test has been validated mostly in hospital settings. Here we have evaluated Fever-7 to identify the presence of respiratory viral infections in a Community Health Center. METHODS: A prospective study was conducted in the "Servicio de Urgencias de Atención Primaria" in Salamanca, Spain. Patients with clinical signs of respiratory infection and at least one point in the National Early Warning Score were recruited. Fever-7 mRNAs were profiled on a Nanostring nCounter® SPRINT instrument from blood collected upon patient enrolment. Viral diagnosis was performed on nasopharyngeal aspirates (NPAs) using the Biofire-RP2 panel. RESULTS: A respiratory virus was detected in the NPAs of 66 of the 100 patients enrolled. Median National Early Warning Score was 7 in the group with no virus detected and 6.5 in the group with a respiratory viral infection (P > .05). The Fever-7 score yielded an overall AUC of 0.81 to predict a positive viral syndromic test. The optimal operating point for the Fever-7 score yielded a sensitivity of 82% with a specificity of 71%. Multivariate analysis showed that Fever-7 was a robust marker of viral infection independently of age, sex, major comorbidities and disease severity at presentation (OR [CI95%], 3.73 [2.14-6.51], P < .001). CONCLUSIONS: Fever-7 is a promising host immune mRNA signature for the early identification of a respiratory viral infection in the community.


Subject(s)
RNA, Messenger/blood , Respiratory Tract Infections/diagnosis , Virus Diseases/diagnosis , Adaptor Proteins, Vesicular Transport/genetics , Aged , Aged, 80 and over , Cathepsin B/genetics , DNA-Binding Proteins/genetics , Early Warning Score , Female , Gene Expression Profiling , Humans , Male , Membrane Glycoproteins/genetics , Membrane Proteins/genetics , Nasopharynx/virology , Respiratory Tract Infections/blood , Respiratory Tract Infections/genetics , Transcriptome , Virus Diseases/blood , Virus Diseases/genetics , gamma Catenin/genetics
18.
Transl Res ; 236: 147-159, 2021 10.
Article in English | MEDLINE | ID: mdl-34048985

ABSTRACT

We aimed to examine the circulating microRNA (miRNA) profile of hospitalized COVID-19 patients and evaluate its potential as a source of biomarkers for the management of the disease. This was an observational and multicenter study that included 84 patients with a positive nasopharyngeal swab Polymerase chain reaction (PCR) test for SARS-CoV-2 recruited during the first pandemic wave in Spain (March-June 2020). Patients were stratified according to disease severity: hospitalized patients admitted to the clinical wards without requiring critical care and patients admitted to the intensive care unit (ICU). An additional study was completed including ICU nonsurvivors and survivors. Plasma miRNA profiling was performed using reverse transcription polymerase quantitative chain reaction (RT-qPCR). Predictive models were constructed using least absolute shrinkage and selection operator (LASSO) regression. Ten circulating miRNAs were dysregulated in ICU patients compared to ward patients. LASSO analysis identified a signature of three miRNAs (miR-148a-3p, miR-451a and miR-486-5p) that distinguishes between ICU and ward patients [AUC (95% CI) = 0.89 (0.81-0.97)]. Among critically ill patients, six miRNAs were downregulated between nonsurvivors and survivors. A signature based on two miRNAs (miR-192-5p and miR-323a-3p) differentiated ICU nonsurvivors from survivors [AUC (95% CI) = 0.80 (0.64-0.96)]. The discriminatory potential of the signature was higher than that observed for laboratory parameters such as leukocyte counts, C-reactive protein (CRP) or D-dimer [maximum AUC (95% CI) for these variables = 0.73 (0.55-0.92)]. miRNA levels were correlated with the duration of ICU stay. Specific circulating miRNA profiles are associated with the severity of COVID-19. Plasma miRNA signatures emerge as a novel tool to assist in the early prediction of vital status deterioration among ICU patients.


Subject(s)
COVID-19/blood , COVID-19/genetics , Circulating MicroRNA/blood , Hospitalization , Severity of Illness Index , Aged , Biomarkers/blood , COVID-19/virology , Critical Illness , Female , Humans , Intensive Care Units , Male , SARS-CoV-2/physiology
19.
Foods ; 10(2)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669662

ABSTRACT

Black carrot has been attracting increasing thanks to its high bioactive compound content. This study presents the polyphenol bio-accessibility of black carrot and two derived products (black carrot snack (BC snack) and black carrot seasoning (BC seasoning)) after in vitro gastrointestinal digestion and colonic fermentation. Additionally, antioxidant activity was measured by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) assays. Nine flavonoids and eight anthocyanins were determined by ultra high-performance liquid chromatography high resolution mass spectrometry (UHPLC-HRMS) analysis, the predominant compounds being the hydroxycinnamic acids 3-O-feruloylquinic acid, 4-O-feruloylquinic acid and chlorogenic acid. The BC snack (108 µmol/g DW) presented the highest total polyphenol content, followed by BC seasoning (53 µmol/g DW) and black carrot (11.4 µmol/g DW). The main polyphenols still bio-accessible after in vitro digestion were the hydroxycinnamic acids, with mean recovery rates of 113 % for black carrot, 69% for BC snack and 81% for BC seasoning. The incubation of black carrot and its derived products with human faecal bacterial resulted in the complete degradation of anthocyanins and in the formation of mainly 3-(4'-hydroxyphenyl)propanoic acid as the major catabolic event. In conclusion, our results suggest that the black carrot matrix impacts significantly affects the bio-accessibility of polyphenols and, therefore, their potential health benefits.

20.
Arch. latinoam. nutr ; 71(1): 13-27, mar. 2021. tab, graf
Article in English | LILACS, LIVECS | ID: biblio-1283240

ABSTRACT

To analyze the influence of individual and household factors on eating behavior (EB) and other determinants related to eating during the home lockdown in the Covid-19 pandemic. Method: Online survey (April 17 to May 10, 2020) to collect sociodemographic information, health, and various EB attitudes. Statistical analysis of the factors: country, setting, sex, BMI classification, lockdown period, a household with children under 15 years, nutritional needs, age groups, type and size household, monthly income, and religion. Results: 1055 households participated. 75% have modified their eating habits, with differences due to being overweight or obese in the person surveyed (p <0.05). Changes in EB and other lifestyles are influenced by household structure (p <0.001) and the effects that the pandemic has had on the economy of families (p <0.001). Compared to those who do not have them, households with children tend to plan much more meals, spend more time eating, seek a healthier diet, increase the number of daily meals, and look more at labeling. In contrast, people who live alone have worsened the hourly routines of the main meals. Conclusions: Confinement has modified eating behavior differently depending on the individual and domestic factors analyzed(AU)


Analizar la influencia de factores individuales y del hogar sobre el comportamiento alimentario (CA), y otros determinantes relacionados con la alimentación, durante el confinamiento domiciliario en la pandemia por Covid-19. Método: Encuesta online (17 abril al 10 de mayo de 2020) para recopilar información sociodemográfica, de salud y diversas actitudes del CA. Análisis estadístico sobre los factores: país, ámbito, sexo, IMC, tiempo de confinamiento, hogar con menores de 15 años, necesidades nutricionales, grupos de edad, tipo y tamaño del hogar, ingresos y religión. Resultados: Participaron 1055 hogares. El 75% ha modificado sus hábitos alimentarios, con diferencias por sobrepeso u obesidad de la persona encuestada (p<0.05). Los cambios en el CA y otros estilos de vida están influenciados por la estructura del hogar (p<0.001) y los efectos que la pandemia ha tenido sobre la economía de las familias (p<0.001). Los hogares que tienen hijos/as, respecto a los que no los tienen, tienden a planificar mucho más las comidas, dedicar más tiempo a la alimentación, procuran una alimentación más saludable, incrementan el número de comidas diarias y miran más el etiquetado. Por el contrario, las personas que viven solas han empeorado las rutinas horarias de las principales comidas. Conclusiones: El confinamiento ha modificado de manera diferenciada el comportamiento alimentario en función de los factores individuales y domésticos analizados(AU)


Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Family , Quarantine , Feeding Behavior , COVID-19 , Housing , Life Style , Spain , Sex Factors , Nutrition Surveys , Eating , Nutritional Transition , Diet, Healthy
SELECTION OF CITATIONS
SEARCH DETAIL
...