Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 265: 116114, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38194775

ABSTRACT

The BRCA2-RAD51 interaction remains an intriguing target for cancer drug discovery due to its vital role in DNA damage repair mechanisms, which cancer cells become particularly reliant on. Moreover, RAD51 has many synthetically lethal partners, including PARP1-2, which can be exploited to induce synthetic lethality in cancer. In this study, we established a 19F-NMR-fragment based approach to identify RAD51 binders, leading to two initial hits. A subsequent SAR program identified 46 as a low micromolar inhibitor of the BRCA2-RAD51 interaction. 46 was tested in different pancreatic cancer cell lines, to evaluate its ability to inhibit the homologous recombination DNA repair pathway, mediated by BRCA2-RAD51 and trigger synthetic lethality in combination with the PARP inhibitor talazoparib, through the induction of apoptosis. Moreover, we further analyzed the 46/talazoparib combination in 3D pancreatic cancer models. Overall, 46 showed its potential as a tool to evaluate the RAD51/PARP1-2 synthetic lethality mechanism, along with providing a prospect for further inhibitors development.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Humans , Antineoplastic Agents/chemistry , BRCA2 Protein/antagonists & inhibitors , BRCA2 Protein/metabolism , Cell Line, Tumor , DNA Repair , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Rad51 Recombinase/antagonists & inhibitors , Rad51 Recombinase/metabolism , Synthetic Lethal Mutations
2.
J Med Chem ; 66(14): 9797-9822, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37440686

ABSTRACT

In cystic fibrosis (CF), deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) is associated to misfolding and defective gating of the mutant channel. One of the most promising CF drug targets is the ubiquitin ligase RNF5, which promotes F508del-CFTR degradation. Recently, the first ever reported inhibitor of RNF5 was discovered, i.e., the 1,2,4-thiadiazol-5-ylidene inh-2. Here, we designed and synthesized a series of new analogues to explore the structure-activity relationships (SAR) of this class of compounds. SAR efforts ultimately led to compound 16, which showed a greater F508del-CFTR corrector activity than inh-2, good tolerability, and no toxic side effects. Analogue 16 increased the basal level of autophagy similar to what has been described with RNF5 silencing. Furthermore, co-treatment with 16 significantly improved the F508del-CFTR rescue induced by the triple combination elexacaftor/tezacaftor/ivacaftor in CFBE41o- cells. These findings validate the 1,2,4-thiadiazolylidene scaffold for the discovery of novel RNF5 inhibitors and provide evidence to pursue this unprecedented strategy for the treatment of CF.


Subject(s)
Cystic Fibrosis , Thiadiazoles , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Thiadiazoles/pharmacology , Thiadiazoles/therapeutic use , Ubiquitin-Protein Ligases/metabolism , Structure-Activity Relationship , Aminophenols , Benzodioxoles/pharmacology , Mutation , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...