Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters











Publication year range
1.
J Plant Physiol ; 297: 154259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705079

ABSTRACT

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Subject(s)
Arabidopsis , Indoleacetic Acids , Phenazines , Plant Roots , Pseudomonas chlororaphis , Sucrose , Sucrose/metabolism , Arabidopsis/microbiology , Arabidopsis/metabolism , Arabidopsis/genetics , Plant Roots/microbiology , Plant Roots/metabolism , Pseudomonas chlororaphis/metabolism , Phenazines/metabolism , Indoleacetic Acids/metabolism
2.
Microb Ecol ; 87(1): 76, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801423

ABSTRACT

Modern crop production relies on the application of chemical pesticides and fertilizers causing environmental and economic challenges. In response, less environmentally impactful alternatives have emerged such as the use of beneficial microorganisms. These microorganisms, particularly plant growth-promoting bacteria (PGPB), have demonstrated their ability to enhance plant growth, protect against various stresses, and reduce the need for chemical inputs. Among the PGPB, Bacillus species have garnered attention due to their adaptability and commercial potential. Recent reports have highlighted Bacillus strains as biocontrol agents against phytopathogenic bacteria while concurrently promoting plant growth. We also examined Bacillus plant growth-promoting abilities in Arabidopsis thaliana seedlings. In this study, we assessed the potential of various Bacillus strains to control diverse phytopathogenic bacteria and inhibit quorum sensing using Chromobacterium violaceum as a model system. In conclusion, our results suggest that bacteria of the genus Bacillus hold significant potential for biotechnological applications. This includes developments aimed at reducing agrochemical use, promoting sustainable agriculture, and enhancing crop yield and protection.


Subject(s)
Arabidopsis , Bacillus , Plant Diseases , Bacillus/physiology , Arabidopsis/microbiology , Arabidopsis/growth & development , Plant Diseases/prevention & control , Plant Diseases/microbiology , Quorum Sensing , Chromobacterium/physiology , Chromobacterium/growth & development , Biological Control Agents/pharmacology , Plant Development , Seedlings/microbiology , Seedlings/growth & development , Soil Microbiology
3.
Planta ; 258(4): 80, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715847

ABSTRACT

MAIN CONCLUSION: In P. aeruginosa, mutation of the gene encoding N-acyl-L-homoserine lactone synthase LasI drives defense and plant growth promotion, and this latter trait requires adequate nitrate nutrition. Cross-kingdom communication with bacteria is crucial for plant growth and productivity. Here, we show a strong induction of genes for nitrate uptake and assimilation in Arabidopsis seedlings co-cultivated with P. aeruginosa WT (PAO1) or ΔlasI mutants defective on the synthesis of the quorum-sensing signaling molecule N-(3-oxododecanoyl)-L-homoserine lactone. Along with differential induction of defense-related genes, the change from plant growth repression to growth promotion upon bacterial QS disruption, correlated with upregulation of the dual-affinity nitrate transceptor CHL1/AtNRT1/NPF6.3 and the nitrate reductases NIA1 and NIA2. CHL1-GUS was induced in Arabidopsis primary root tips after transfer onto P. aeruginosa ΔlasI streaks at low and high N availability, whereas this bacterium required high concentrations of nitrogen to potentiate root and shoot biomass production and to improve root branching. Arabidopsis chl1-5 and chl1-12 mutants and double mutants in NIA1 and NIA2 nitrate reductases showed compromised growth under low nitrogen availability and failed to mount an effective growth promotion and root branching response even at high NH4NO3. WT P. aeruginosa PAO1 and P. aeruginosa ΔlasI mutant promoted the accumulation of nitric oxide (NO) in roots of both the WT and nia1nia2 double mutants, whereas NO donors SNP or SNAP did not improve growth or root branching in nia1nia2 double mutants with or without bacterial cocultivation. Thus, inoculation of Arabidopsis roots with P. aeruginosa drives gene expression for improved nitrogen acquisition and this macronutrient is critical for the plant growth-promoting effects upon disruption of the LasI quorum-sensing system.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nitrates , Pseudomonas aeruginosa/genetics , Arabidopsis/genetics , Lactones , Acyl-Butyrolactones , Nitrate Reductases , Nitric Oxide , Arabidopsis Proteins/genetics , Nitrate Reductase/genetics
4.
Protoplasma ; 259(4): 835-854, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34529144

ABSTRACT

Microbial volatile organic compounds (mVOCs) play important roles in inter- and intra-kingdom interactions, and they are also important as signal molecules in physiological processes acting either as plant growth-promoting or negatively modulating plant development. We investigated the effects of mVOCs emitted by PGPR vs non-PGPR from avocado trees (Persea americana) on growth of Arabidopsis thaliana seedlings. Chemical diversity of mVOCs was determined by SPME-GC-MS; selected compounds were screened in dose-response experiments in A. thaliana transgenic lines. We found that plant growth parameters were affected depending on inoculum concentration. Twenty-six compounds were identified in PGPR and non-PGPR with eight of them not previously reported. The VOCs signatures were differential between those groups. 4-methyl-2-pentanone, 1-nonanol, 2-phenyl-2-propanol and ethyl isovalerate modified primary root architecture influencing the expression of auxin- and JA-responsive genes, and cell division. Lateral root formation was regulated by 4-methyl-2-pentanone, 3-methyl-1-butanol, 1-nonanol and ethyl isovalerate suggesting a participation via JA signalling. Our study revealed the differential emission of volatiles by PGPR vs non-PGPR from avocado trees and provides a general view about the mechanisms by which those volatiles influence plant growth and development. Rhizobacteria strains and mVOCs here reported are promising for improvement the growth and productivity of avocado crop.


Subject(s)
Arabidopsis , Persea , Volatile Organic Compounds , Indoleacetic Acids/pharmacology , Persea/microbiology , Plant Development , Trees
5.
Photochem Photobiol Sci ; 19(10): 1423-1432, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32970082

ABSTRACT

A series of water soluble 8-alcoxypyrene-1,3,6-trisulfonic sodium salts bearing different alcoxy lateral chains and functional end groups was synthesized and the molecular structure was corroborated by nuclear magnetic resonance spectroscopy. The photophysical properties in water analyzed by UV-Vis and static and dynamic fluorescence revealed that all of the pigments emit in the blue region at a maximal wavelength of 436 nm and with fluorescence lifetimes in the range of ns. Among them, sodium 8-((10-carboxydecyl) oxy) pyrene-1,3,6-trisulfonate M1 exhibits a high fluorescence quantum yield (φ = 80%) and a good interaction with B. subtilis LPM1 rhizobacteria; this has been demonstrated through in vitro staining assays. Tomato plants (Solanum lycopersicon cv. Micro-Tom) increased the release of root exudates, mainly malic and fumaric acids, after 12 h of treatment with benzothiadiazole (BTH) as a foliar elicitor. However, the chemotaxis analysis demonstrated that malic acid is the most powerful chemoattractant of the rhizobacteria Bacillus subtilis LPM1: in agar plates, a major growth (60 mm) was found for a concentration of 100 mM, while in capillary tubes, the earliest response was at 30 min with 3.3 × 108 CFU mL-1. The confocal microscopic analysis carried out on the tomato roots of the pyrene stained B. subtilis LPM1 revealed that this bacterium mainly colonizes the epidermal zones, i.e. the junctions to primary roots, lateral roots and root hairs, meaning that these root hair sections are the highest colonisable sites involved in the biosynthesis of exudates. This fluorescent pyrene marker M1 represents a valuable tool to evaluate B. subtilis-plant interactions in an easy and quick test in both in vitro and in vivo tomato crops.


Subject(s)
Bacillus subtilis/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Plant Roots/chemistry , Pyrenes/analysis , Solanum lycopersicum/microbiology , Fluorescent Dyes/chemical synthesis , Microscopy, Confocal , Molecular Structure , Spectrometry, Fluorescence
6.
Genet Mol Biol ; 43(1): e20190221, 2020.
Article in English | MEDLINE | ID: mdl-32105289

ABSTRACT

Auxin regulates a plethora of events during plant growth and development, acting in concert with other phytohormones. YUCCA genes encode flavin monooxygenases that function in tryptophan-dependent auxin biosynthesis. To understand the contribution of the YUCCA4 (YUC4) gene on auxin homeostasis, plant growth and interaction with abscisic acid (ABA) signaling, 35S::YUC4 seedlings were generated, which showed elongated hypocotyls with hyponastic leaves and changes in root system architecture that correlate with enhanced auxin responsive gene expression. Differential expression of PIN1, 2, 3 and 7 auxin transporters was detected in roots of YUC4 overexpressing seedlings compared to the wild-type: PIN1 was down-regulated whereas PIN2, PIN3 and PIN7 were up-regulated. Noteworthy, 35S::YUC4 lines showed enhanced sensitivity to ABA on seed germination and post-embryonic root growth, involving ABI4 transcription factor. The auxin reporter genes DR5::GUS, DR5::GFP and BA3::GUS further revealed that abscisic acid impairs auxin responses in 35S::YUC4 seedlings. Our results indicate that YUC4 overexpression influences several aspects of auxin homeostasis and reveal the critical roles of ABI4 during auxin-ABA interaction in germination and primary root growth.

7.
Planta ; 251(1): 2, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31776759

ABSTRACT

MAIN CONCLUSION: CRK28, a cysteine-rich receptor-like kinase, plays a role in root organogenesis and overall growth of plants and antagonizes abscisic acid response in seed germination and primary root growth. Receptor-like kinases (RLK) orchestrate development and adaptation to environmental changes in plants. One of the largest RLK groups comprises cysteine-rich receptor-like kinases (CRKs), for which the function of most members remains unknown. In this report, we show that the loss of function of CRK28 led to the formation of roots that are longer and more branched than the parental (Col-0) plantlets, and this correlates with an enhanced domain of the mitotic reporter CycB1:uidA in primary root meristems, whereas CRK28 overexpressing lines had the opposite phenotype, including slow root growth and reduced lateral root formation. Epidermal cell analyses revealed that crk28 mutants had reduced root hair length and increased trichome number, whereas 35S::CRK28 lines present primary roots with longer root hairs but lesser trichomes in leaves. The overall growth in soil of crk28 mutant and CRK28 overexpressing lines was reduced or enhanced, respectively, when compared to the parental (Col-0) seedlings, while germination, root growth and expression analyses of ABI3 and ABI5 further showed that CRK28 modulates ABA responses, which may be important to fine-tune plant morphogenesis. Our study unravels the participation of RLK signaling in root growth and epidermal cell differentiation.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Protein Serine-Threonine Kinases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Protein Serine-Threonine Kinases/genetics
8.
Protoplasma ; 256(6): 1657-1666, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31273542

ABSTRACT

The transit from indeterminate to determinate root developmental program compromises growth and causes the differentiation of the meristem, but a direct link between this process with auxin signaling and/or viability of initial cells remains untested. Here, through the isolation and characterization of the halted primary root1 (hpr1) mutant of Arabidopsis, which develops primary and lateral roots with genetically stable determinate growth after germination, we show that the differentiation of the root meristem correlates with enhanced auxin responsiveness and is preceded by the death of provasculature initial cells in both primary and lateral roots. Supplementation of indole-3-acetic acid causes both a dose-dependent repression of primary root growth and an induction of DR5:uidA expression in wild-type seedlings, and these effects were exacerbated in hpr1 mutants. The damage of provasculature initial cells in the root of hpr1 mutants occurred at earlier times than the full differentiation of the meristem, and correlates with a reduced expression domain of CycB1:uidA and PRZ:uidA. Thus, HPR1 plays critical functions for stem cell maintenance, auxin homeostasis, cell division in the meristem, and indeterminate root growth.


Subject(s)
Arabidopsis Proteins/chemistry , Indoleacetic Acids/metabolism , Plant Roots/chemistry
9.
Plant Sci ; 284: 135-142, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31084866

ABSTRACT

Bacteria rely on chemical communication to sense the environment and to retrieve information on their population densities. Accordingly, a vast repertoire of molecules is released, which synchronizes expression of genes, coordinates behavior through a process termed quorum-sensing (QS), and determines the relationships with eukaryotic species. Already identified QS molecules from Gram negative bacteria can be grouped into two main classes, N-acyl-L-homoserine lactones (AHLs) and cyclodipeptides (CDPs), with roles in biofilm formation, bacterial virulence or symbiotic interactions. Noteworthy, plants detect each of these molecules, change their own gene expression programs, re-configurate root architecture, and activate defense responses, improving in this manner their adaptation to natural and agricultural ecosystems. AHLs may act as alarm signals, pathogen and/or microbe-associated molecular patterns, whereas CDPs function as hormonal mimics for plants via their putative interactions with the auxin receptor Transport Inhibitor Response1 (TIR1). A major challenge is to identify the molecular pathways of QS-mediated crosstalk and the plant receptors and interacting proteins for AHLs, CDPs and related signals.


Subject(s)
Plant Roots/microbiology , Quorum Sensing/physiology , Rhizobiaceae/metabolism , Host-Pathogen Interactions , Plant Roots/anatomy & histology , Plant Roots/physiology
10.
Plant Sci ; 280: 175-186, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30823995

ABSTRACT

The plant hormone ethylene induces auxin biosynthesis and transport and modulates root growth and branching. However, its function on root stem cells and the identity of interacting factors for the control of meristem activity remains unclear. Genetic analysis for primary root growth in wild-type (WT) Arabidopsis thaliana seedlings and ethylene-related mutants showed that the loss-of-function of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) inhibits cell division and elongation. This phenotype is associated with an increase in the expression of the auxin transporter PIN2 and a drastic decrease in the expression of key factors for stem cell niche maintenance such as PLETHORA1, SHORT ROOT and SCARECROW. While the root stem cell niche is affected in ctr1 mutants, its maintenance is severely compromised in the ctr1-1eir1-1(pin2) double mutant, in which an evident loss of proliferative capacity of the meristematic cells leads to a fully differentiated root meristem shortly after germination. Root traits affected in ctr1-1 mutants could be restored in ctr1-1ein2-1 double mutants. These results reveal that ethylene perception via CTR1 and EIN2 in the root modulates the proliferative capacity of root stem cells via affecting the expression of genes involved in the two major pathways, AUX-PIN-PLT and SCR-SHR, which are key factors for proper root stem cell niche maintenance.


Subject(s)
Arabidopsis Proteins/metabolism , Seedlings/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Ethylenes/metabolism , Meristem/metabolism , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plants, Genetically Modified/metabolism , Signal Transduction/physiology
11.
BMC Genomics ; 19(1): 721, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30285612

ABSTRACT

BACKGROUND: The Ambrosia Fusarium Clade phytopathogenic Fusarium fungi species have a symbiotic relationship with ambrosia beetles in the genus Euwallacea (Coleoptera: Curculionidae). Related beetle species referred to as Euwallacea sp. near fornicatus have been spread in California, USA and are recognized as the causal agents of Fusarium dieback, a disease that causes mortality of many plant species. Despite the importance of this fungi, no transcriptomic resources have been generated. The datasets described here represent the first ever transcripts available for these species. We focused our study on the isolated species of Fusarium that is associated with one of the cryptic species referred to as Kuroshio Shot Hole Borer (KSHB) Euwallacea sp. near fornicatus. RESULTS: Hydrogen concentration is a critical signal in fungi for growth and host colonization, the aim of this study was to evaluate the effect of different pH conditions on growth and gene expression of the fungus Fusarium sp. associated with KSHB. An RNA-seq approach was used to compare the gene expression of the fungus grown for 2 weeks in liquid medium at three different pH levels (5.0, 6.0, and 7.0). An unbuffered treatment was included to evaluate the capability of the fungus to change the pH of its environment and the impact in gene expression. The results showed that the fungus can grow and modulate its genetic expression at different pH conditions; however, growth was stunted in acidic pH in comparison with neutral pH. The results showed a differential expression pattern in each pH condition even when acidic conditions prevailed at the end of the experiment. After comparing transcriptomics data from the three treatments, we found a total of 4,943 unique transcripts that were differentially expressed. CONCLUSIONS: We identified transcripts related to pH signaling such as the conserved PAL/RIM pathway, some transcripts related to secondary metabolism and other transcripts that were differentially expressed. Our analysis suggests possible mechanisms involved in pathogenicity in this novel Fusarium species. This is the first report that shows transcriptomic data of this pathogen as well as the first report of genes and proteins involved in their metabolism identifying potential virulence factors.


Subject(s)
Environment , Fusarium/genetics , Fusarium/physiology , Gene Expression Profiling , Weevils/microbiology , Animals , Fusaric Acid/biosynthesis , Fusarium/growth & development , Fusarium/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Annotation , Phylogeny , Sequence Homology, Nucleic Acid , Symbiosis
12.
Genome Announc ; 5(35)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28860245

ABSTRACT

Here, we report the genome of Fusarium euwallaceae strain HFEW-16-IV-019, an isolate obtained from Kuroshio shot hole borer (a Euwallacea sp.). These beetles were collected in Tijuana, Mexico, from elm trees showing typical symptoms of Fusarium dieback. The final assembly consists of 287 scaffolds spanning 48,274,071 bp and 13,777 genes.

13.
Plant Mol Biol ; 86(1-2): 35-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24928490

ABSTRACT

Soil contamination by hexavalent chromium [Cr(VI) or chromate] due to anthropogenic activities has become an increasingly important environmental problem. To date few studies have been performed to elucidate the signaling networks involved on adaptive responses to (CrVI) toxicity in plants. In this work, we report that depending upon its concentration, Cr(VI) alters in different ways the architecture of the root system in Arabidopsis thaliana seedlings. Low concentrations of Cr (20-40 µM) promoted primary root growth, while concentrations higher than 60 µM Cr repressed growth and increased formation of root hairs, lateral root primordia and adventitious roots. We analyzed global gene expression changes in seedlings grown in media supplied with 20 or 140 µM Cr. The level of 731 transcripts was significantly modified in response to Cr treatment with only five genes common to both Cr concentrations. Interestingly, 23 genes related to iron (Fe) acquisition were up-regulated including IRT1, YSL2, FRO5, BHLH100, BHLH101 and BHLH039 and the master controllers of Fe deficiency responses PYE and BTS were specifically activated in pericycle cells. It was also found that increasing concentration of Cr in the plant correlated with a decrease in Fe content, but increased both acidification of the rhizosphere and activity of the ferric chelate reductase. Supply of Fe to Cr-treated Arabidopsis allowed primary root to resume growth and alleviated toxicity symptoms, indicating that Fe nutrition is a major target of Cr stress in plants. Our results show that low Cr levels are beneficial to plants and that toxic Cr concentrations activate a low-Fe rescue system.


Subject(s)
Arabidopsis/drug effects , Chromates/toxicity , Soil Pollutants/toxicity , Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression Regulation, Plant/drug effects , Homeostasis/drug effects , Iron/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Seedlings/drug effects , Seedlings/genetics , Seedlings/physiology , Signal Transduction/drug effects
14.
Plant Mol Biol ; 81(6): 609-25, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23412925

ABSTRACT

The control of cell division by growth regulators is critical to proper shoot and root development. Alkamides belong to a class of small lipid amides involved in plant morphogenetic processes, from which N-isobutyl decanamide is one of the most active compounds identified. This work describes the isolation and characterization of an N-isobutyl decanamide-hypersensitive (dhm1) mutant of Arabidopsis (Arabidopsis thaliana). dhm1 seedlings grown in vitro develop disorganized tumorous tissue in petioles, leaves and stems. N-isobutyl decanamide treatment exacerbates the dhm1 phenotype resulting in widespread production of callus-like structures in the mutant. Together with these morphological alterations in shoot, dhm1 seedlings sustained increased lateral root formation and greater sensitivity to alkamides in the inhibition of primary root growth. The mutants also show reduced etiolation when grown in darkness. When grown in soil, adult dhm1 plants were characterized by reduced plant size, and decreased fertility. Genetic analysis indicated that the mutant phenotype segregates as a single recessive Mendelian trait. Developmental alterations in dhm1 were related to an enhanced expression of the cell division marker CycB1-uidA both in the shoot and root system, which correlated with altered expression of auxin and cytokinin responsive gene markers. Pharmacological inhibition of auxin transport decreased LR formation in WT and dhm1 seedlings in a similar manner, indicating that auxin transport is involved in the dhm1 root phenotype. These data show an important role of alkamide signaling in cell proliferation and plant architecture remodeling likely acting through the DHM1 protein.


Subject(s)
Alkanes/pharmacology , Amides/pharmacology , Arabidopsis/drug effects , Plant Diseases/genetics , Plant Roots/drug effects , Plant Shoots/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Cell Division , Cell Proliferation , Crosses, Genetic , Cyclin B/genetics , Cyclin B/metabolism , Cytokinins/genetics , Cytokinins/metabolism , Darkness , Gene Expression Regulation, Plant , Genes, Plant , Germination , Indoleacetic Acids/metabolism , Mutagenesis , Phenotype , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Stems/drug effects , Plant Stems/genetics , Plant Stems/growth & development , Plant Stems/metabolism , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Time Factors
15.
Proc Natl Acad Sci U S A ; 108(17): 7253-8, 2011 Apr 26.
Article in English | MEDLINE | ID: mdl-21482761

ABSTRACT

Microorganisms and their hosts communicate with each other through an array of signals. The plant hormone auxin (indole-3-acetic acid; IAA) is central in many aspects of plant development. Cyclodipeptides and their derivative diketopiperazines (DKPs) constitute a large class of small molecules synthesized by microorganisms with diverse and noteworthy activities. Here, we present genetic, chemical, and plant-growth data showing that in Pseudomonas aeruginosa, the LasI quorum-sensing (QS) system controls the production of three DKPs--namely, cyclo(L-Pro-L-Val), cyclo(L-Pro-L-Phe), and cyclo(L-Pro-L-Tyr)--that are involved in plant growth promotion by this bacterium. Analysis of all three bacterial DKPs in Arabidopsis thaliana seedlings provided detailed information indicative of an auxin-like activity, based on their efficacy at modulating root architecture, activation of auxin-regulated gene expression, and response of auxin-signaling mutants tir1, tir1 afb2 afb3, arf7, arf19, and arf7arf19. The observation that QS-regulated bacterial production of DKPs modulates auxin signaling and plant growth promotion establishes an important function for DKPs mediating prokaryote/eukaryote transkingdom signaling.


Subject(s)
Arabidopsis/growth & development , Bacterial Proteins , Indoleacetic Acids/metabolism , Peptides, Cyclic , Pseudomonas aeruginosa/chemistry , Seedlings/growth & development , Signal Transduction/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/pharmacology , Mutation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Seedlings/genetics
16.
Plant Physiol ; 152(3): 1659-73, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20107026

ABSTRACT

Alkamides belong to a class of small lipid signals of wide distribution in plants, which are structurally related to the bacterial quorum-sensing signals N-acyl-l-homoserine lactones. Arabidopsis (Arabidopsis thaliana) seedlings display a number of root developmental responses to alkamides, including primary root growth inhibition and greater formation of lateral roots. To gain insight into the regulatory mechanisms by which these compounds alter plant development, we performed a mutant screen for identifying Arabidopsis mutants that fail to inhibit primary root growth when grown under a high concentration of N-isobutyl decanamide. A recessive N-isobutyl decanamide-resistant mutant (decanamide resistant root [drr1]) was isolated because of its continued primary root growth and reduced lateral root formation in response to this alkamide. Detailed characterization of lateral root primordia development in the wild type and drr1 mutants revealed that DRR1 is required at an early stage of pericycle cell activation to form lateral root primordia in response to both N-isobutyl decanamide and N-decanoyl-l-homoserine lactone, a highly active bacterial quorum-sensing signal. Exogenously supplied auxin similarly inhibited primary root growth and promoted lateral root formation in wild-type and drr1 seedlings, suggesting that alkamides and auxin act by different mechanisms to alter root system architecture. When grown both in vitro and in soil, drr1 mutants showed dramatically increased longevity and reduced hormone- and age-dependent senescence, which were related to reduced lateral root formation when exposed to stimulatory concentrations of jasmonic acid. Taken together, our results provide genetic evidence indicating that alkamides and N-acyl-l-homoserine lactones can be perceived by plants to modulate root architecture and senescence-related processes possibly by interacting with jasmonic acid signaling.


Subject(s)
Alkanes/pharmacology , Amides/pharmacology , Arabidopsis/genetics , Plant Roots/growth & development , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/pharmacology , Arabidopsis/growth & development , Cyclopentanes/pharmacology , Genes, Plant , Homoserine/analogs & derivatives , Homoserine/pharmacology , Indoleacetic Acids/pharmacology , Mutagenesis, Insertional , Mutation , Oxylipins/pharmacology , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development
17.
Plant Cell Environ ; 31(10): 1497-509, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18657054

ABSTRACT

N-acyl-homoserine lactones (AHLs) belong to a class of bacterial quorum-sensing signals important for bacterial cell-to-cell communication. We evaluated Arabidopsis thaliana growth responses to a variety of AHLs ranging from 4 to 14 carbons in length, focusing on alterations in post-embryonic root development as a way to determine the biological activity of these signals. The compounds affected primary root growth, lateral root formation and root hair development, and in particular, N-decanoyl-HL (C10-HL) was found to be the most active AHL in altering root system architecture. Developmental changes elicited by C10-HL were related to altered expression of cell division and differentiation marker lines pPRZ1:uidA, CycB1:uidA and pAtEXP7:uidA in Arabidopsis roots. Although the effects of C10-HL were similar to those produced by auxins in modulating root system architecture, the primary and lateral root response to this compound was found to be independent of auxin signalling. Furthermore, we show that mutant and overexpressor lines for an Arabidopsis fatty acid amide hydrolase gene (AtFAAH) sustained altered growth response to C10-HL. All together, our results suggest that AHLs alter root development in Arabidopsis and that plants posses the enzymatic machinery to metabolize these compounds.


Subject(s)
Acyl-Butyrolactones/pharmacology , Arabidopsis/growth & development , Plant Roots/growth & development , Quorum Sensing , Amidohydrolases/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Cell Differentiation , Cell Division , Indoleacetic Acids/pharmacology , Phenotype , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/growth & development , Seedlings/drug effects , Seedlings/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL