Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Genes (Basel) ; 14(2)2023 01 25.
Article in English | MEDLINE | ID: mdl-36833237

ABSTRACT

Wnt signaling has been shown to play multiple roles in regenerative processes, one of the most widely studied of which is the regeneration of the intestinal luminal epithelia. Most studies in this area have focused on self-renewal of the luminal stem cells; however, Wnt signaling may also have more dynamic functions, such as facilitating intestinal organogenesis. To explore this possibility, we employed the sea cucumber Holothuria glaberrima that can regenerate a full intestine over the course of 21 days after evisceration. We collected RNA-seq data from various intestinal tissues and regeneration stages and used these data to define the Wnt genes present in H. glaberrima and the differential gene expression (DGE) patterns during the regenerative process. Twelve Wnt genes were found, and their presence was confirmed in the draft genome of H. glaberrima. The expressions of additional Wnt-associated genes, such as Frizzled and Disheveled, as well as genes from the Wnt/ß-catenin and Wnt/Planar Cell Polarity (PCP) pathways, were also analyzed. DGE showed unique distributions of Wnt in early- and late-stage intestinal regenerates, consistent with the Wnt/ß-catenin pathway being upregulated during early-stages and the Wnt/PCP pathway being upregulated during late-stages. Our results demonstrate the diversity of Wnt signaling during intestinal regeneration, highlighting possible roles in adult organogenesis.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Animals , beta Catenin/metabolism , Intestines , Intestinal Mucosa/metabolism , Organogenesis
2.
Int J Mol Sci ; 23(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36362181

ABSTRACT

Injury to the central nervous system (CNS) results in permanent damage and lack of function in most vertebrate animals, due to their limited regenerative capacities. In contrast, echinoderms can fully regenerate their radial nerve cord (RNC) following transection, with little to no scarring. Investigators have associated the regenerative capacity of some organisms to the stress response and inflammation produced by the injury. Here, we explore the gene activation profile of the stressed holothurian CNS. To do this, we performed RNA sequencing on isolated RNC explants submitted to the stress of transection and enzyme dissection and compared them with explants kept in culture for 3 days following dissection. We describe stress-associated genes, including members of heat-shock families, ubiquitin-related pathways, transposons, and apoptosis that were differentially expressed. Surprisingly, the stress response does not induce apoptosis in this system. Other genes associated with stress in other animal models, such as hero proteins and those associated with the integrated stress response, were not found to be differentially expressed either. Our results provide a new viewpoint on the stress response in the nervous system of an organism with amazing regenerative capacities. This is the first step in deciphering the molecular processes that allow echinoderms to undergo fully functional CNS regeneration, and also provides a comparative view of the stress response in other organisms.


Subject(s)
Spinal Cord Injuries , Transcriptome , Animals , Central Nervous System/physiology , Nerve Regeneration/genetics , Echinodermata , Gene Expression Profiling
3.
Sci Rep ; 11(1): 346, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431961

ABSTRACT

Echinoderms comprise a group of animals with impressive regenerative capabilities. They can replace complex internal organs following injury or autotomy. In holothurians or sea cucumbers, cellular processes of intestinal regeneration have been extensively studied. The molecular machinery behind this faculty, however, remains to be understood. Here we assembled and annotated a de novo transcriptome using RNA-seq data consisting of regenerating and non-regenerating intestinal tissues from the sea cucumber Holothuria glaberrima. Comparisons of differential expression were made using the mesentery as a reference against 24 h and 3 days regenerating intestine, revealing a large number of differentially expressed transcripts. Gene ontology and pathway enrichment analysis showed evidence of increasing transcriptional activity. Further analysis of transcripts associated with transcription factors revealed diverse expression patterns with mechanisms involving developmental and cancer-related activity that could be related to the regenerative process. Our study demonstrates the broad and diversified gene expression profile during the early stages of the process using the mesentery as the focal point of intestinal regeneration. It also establishes the genes that are the most important candidates in the cellular processes that underlie regenerative responses.


Subject(s)
Gene Expression Profiling , Holothuria/genetics , Holothuria/physiology , Intestines/physiology , Regeneration/genetics , Animals , RNA-Seq , Transcription, Genetic
4.
Proc Biol Sci ; 286(1900): 20182924, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30940064

ABSTRACT

Species delimitation is a major quest in biology and is essential for adequate management of the organismal diversity. A challenging example comprises the fish species of red snappers in the Western Atlantic. Red snappers have been traditionally recognized as two separate species based on morphology: Lutjanus campechanus (northern red snapper) and L. purpureus (southern red snapper). Recent genetic studies using mitochondrial markers, however, failed to delineate these nominal species, leading to the current lumping of the northern and southern populations into a single species ( L. campechanus). This decision carries broad implications for conservation and management as red snappers have been commercially over-exploited across the Western Atlantic and are currently listed as vulnerable. To address this conflict, we examine genome-wide data collected throughout the range of the two species. Population genomics, phylogenetic and coalescent analyses favour the existence of two independent evolutionary lineages, a result that confirms the morphology-based delimitation scenario in agreement with conventional taxonomy. Despite finding evidence of introgression in geographically neighbouring populations in northern South America, our genomic analyses strongly support isolation and differentiation of these species, suggesting that the northern and southern red snappers should be treated as distinct taxonomic entities.


Subject(s)
Genetic Speciation , Perciformes/classification , Animals , Atlantic Ocean , Caribbean Region , DNA, Mitochondrial/analysis , Genome , Gulf of Mexico , Perciformes/anatomy & histology , Perciformes/genetics , Phylogeny
5.
Oncotarget ; 10(10): 1085-1101, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30800220

ABSTRACT

Prostate cancer (PCa) is the most common diagnosed cancer and is the third cause of cancer mortality in men in the USA. Andrographolide, a diterpenoid lactone isolated from Andrographis paniculata, has shown to possess anticarcinogenic activity in a variety of cancer cells. In this study, we examined the efficacy of Andrographolide in PCa using in vitro and in vivo models. Androgen-independent (PC3) and androgen-dependent (22RV1) cell lines were treated with Andrographolide to determine the effect in cell motility, cell proliferation and apoptosis. Andrographolide decreased PCa cell migration, decreased invasion, and increased cell apoptosis in vitro. Tumor growth was evaluated using an orthotopic xenograft model in which the prostates of SCID mice were injected with 22RV1, and mice were treated three times per week with Andrographolide 10 mg/kg. Andrographolide decreased tumor volume, MMP11 expression and blood vessels formation in vivo. Gene expression analysis identified cellular compromise, cell cycle, and "DNA recombination, replication and repair" as the major molecular and cellular functions altered in tumors treated with Andrographolide. Within DNA repair genes we confirmed increased expression of genes involved in DNA double strand break repair. Consistent with this observation we detected increased γH2AX in Andrographolide treated tumors and in cells in culture. Taken together, these data suggest that Andrographolide inhibits PCa by promoting DNA damage.

6.
Blood ; 132(23): 2495-2505, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30282800

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) affect >200 000 individuals yearly with a 40% mortality rate. Although platelets are implicated in the progression of ALI/ARDS, their exact role remains undefined. Triggering receptor expressed in myeloid cells (TREM)-like transcript 1 (TLT-1) is found on platelets, binds fibrinogen, and mediates clot formation. We hypothesized that platelets use TLT-1 to manage the progression of ALI/ARDS. Here we retrospectively measure plasma levels of soluble TLT-1 (sTLT-1) from the ARDS Network clinical trial and show that patients whose sTLT-1 levels were >1200 pg/mL had nearly twice the mortality risk as those with <1200 pg/mL (P < .001). After correcting for confounding factors such as creatinine levels, Acute Physiology And Chronic Health Evaluation III scores, age, platelet counts, and ventilation volume, sTLT-1 remains significant, suggesting that sTLT-1 is an independent prognostic factor (P < .0001). These data point to a role for TLT-1 during the progression of ALI/ARDS. We use a murine lipopolysaccharide-induced ALI model and demonstrate increased alveolar bleeding, aberrant neutrophil transmigration and accumulation associated with decreased fibrinogen deposition, and increased pulmonary tissue damage in the absence of TLT-1. The loss of TLT-1 resulted in an increased proportion of platelet-neutrophil conjugates (43.73 ± 24.75% vs 8.92 ± 2.4% in wild-type mice), which correlated with increased neutrophil death. Infusion of sTLT-1 restores normal fibrinogen deposition and reduces pulmonary hemorrhage by 40% (P ≤ .001) and tissue damage by 25% (P ≤ .001) in vivo. Our findings suggest that TLT-1 uses fibrinogen to govern the transition between inflammation and hemostasis and facilitate controlled leukocyte transmigration during the progression of ARDS.


Subject(s)
Acute Lung Injury/blood , Blood Platelets/metabolism , Receptors, Immunologic/blood , Respiratory Distress Syndrome/blood , Acute Lung Injury/pathology , Animals , Blood Platelets/pathology , Disease Models, Animal , Humans , Mice , Mice, Knockout , Neutrophil Infiltration , Neutrophils/metabolism , Neutrophils/pathology , Predictive Value of Tests , Respiratory Distress Syndrome/pathology , Transendothelial and Transepithelial Migration
7.
Methods Ecol Evol ; 9(2): 390-398, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29755717

ABSTRACT

The use of image data to quantify, study and compare variation in the colors and patterns of organisms requires the alignment of images to establish homology, followed by color-based segmentation of images. Here we describe an R package for image alignment and segmentation that has applications to quantify color patterns in a wide range of organisms. patternize is an R package that quantifies variation in color patterns obtained from image data. patternize first defines homology between pattern positions across specimens either through manually placed homologous landmarks or automated image registration. Pattern identification is performed by categorizing the distribution of colors using an RGB threshold, k-means clustering or watershed transformation.We demonstrate that patternize can be used for quantification of the color patterns in a variety of organisms by analyzing image data for butterflies, guppies, spiders and salamanders. Image data can be compared between sets of specimens, visualized as heatmaps and analyzed using principal component analysis (PCA). patternize has potential applications for fine scale quantification of color pattern phenotypes in population comparisons, genetic association studies and investigating the basis of color pattern variation across a wide range of organisms.

8.
P R Health Sci J ; 36(4): 223-231, 2017 12.
Article in English | MEDLINE | ID: mdl-29220067

ABSTRACT

OBJECTIVE: To examine the trajectory of fatigue experienced by 26 Puerto Rican (PR) men over the course of External Beam Radiation Therapy (EBRT) and to assess gene expression changes from baseline to midpoint of EBRT using microarray technology. Design/Research Approach- Prospective exploratory and comparative design study. Setting- RT facility located in San Juan, PR. Sample/Participants-26 PR men with non-metastatic prostate cancer. METHODS: Participants completed 2 paper forms: demographics and the Spanish version of the 13-item FACT-fatigue at baseline, midpoint, and end of EBRT. Wholeblood samples were collected at baseline and at midpoint of EBRT. Descriptive data was analyzed using t-test, Wilcoxon, and Friedman test for repeated measures. Gene expression data was analyzed using the LIMMA package in R; the functional network analysis was conducted using Ingenuity Pathway analysis. Main Research Variable-Fatigue scores, gene expression. RESULTS: Subjects were of ages 52-81 with fatigue scores that remained unchanged during EBRT (baseline=42.38, SD=9.34; midpoint=42.11, SD=8.93, endpoint=43.04, SD=8.62). Three hundred seventy-three genes (130-up regulated and 243-down regulated) were differentially expressed from baseline to mid-point of EBRT (FDR<0.01). The top distinct canonical pathways of the differentially expressed probesets (p<0.0001) were: "Phospholipase C Signaling," "Role of NFAT in Regulation of the Immune Response," and "Gαq Signaling." CONCLUSION: While fatigue did not worsen over the course of EBRT for this sample as a group, there was variability in fatigue across the sample. It is possible that the over expression of the SESN3 gene, known to suppress oxidative damage, may have contributed to the attenuation of fatigue in this clinical population.


Subject(s)
Fatigue/epidemiology , Heat-Shock Proteins/genetics , Hispanic or Latino , Prostatic Neoplasms/radiotherapy , Aged , Aged, 80 and over , Down-Regulation , Fatigue/genetics , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prospective Studies , Prostatic Neoplasms/genetics , Puerto Rico , Statistics, Nonparametric , Up-Regulation
9.
Neural Plast ; 2016: 1752176, 2016.
Article in English | MEDLINE | ID: mdl-26843989

ABSTRACT

An increasing body of evidence suggests that mechanisms related to the introduction and repair of DNA double strand breaks (DSBs) may be associated with long-term memory (LTM) processes. Previous studies from our group suggested that factors known to function in DNA recombination/repair machineries, such as DNA ligases, polymerases, and DNA endonucleases, play a role in LTM. Here we report data using C57BL/6 mice showing that the V(D)J recombination-activating gene 1 (RAG1), which encodes a factor that introduces DSBs in immunoglobulin and T-cell receptor genes, is induced in the amygdala, but not in the hippocampus, after context fear conditioning. Amygdalar induction of RAG1 mRNA, measured by real-time PCR, was not observed in context-only or shock-only controls, suggesting that the context fear conditioning response is related to associative learning processes. Furthermore, double immunofluorescence studies demonstrated the neuronal localization of RAG1 protein in amygdalar sections prepared after perfusion and fixation. In functional studies, intra-amygdalar injections of RAG1 gapmer antisense oligonucleotides, given 1 h prior to conditioning, resulted in amygdalar knockdown of RAG1 mRNA and a significant impairment in LTM, tested 24 h after training. Overall, these findings suggest that the V(D)J recombination-activating gene 1, RAG1, may play a role in LTM consolidation.


Subject(s)
Association Learning/physiology , Conditioning, Psychological/physiology , Fear/physiology , Genes, RAG-1 , Homeodomain Proteins/genetics , Memory, Long-Term/physiology , Amygdala/metabolism , Animals , Electroshock , Hippocampus/metabolism , Homeodomain Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism
10.
Int J Environ Res Public Health ; 13(1): ijerph13010018, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26703677

ABSTRACT

PURPOSE: This paper describes SalHUD, a prototype web-based application for visualizing health data from Puerto Rico. Our initial focus was to provide interactive maps displaying years of potential life lost (YPLL). METHODS: The public-use mortality file for year 2008 was downloaded from the Puerto Rico Institute of Statistics website. Data was processed with R, Python and EpiInfo to calculate years of potential life lost for the leading causes of death on each of the 78 municipalities in the island. Death records were classified according to ICD-10 codes. YPLL for each municipality was integrated into AtlasPR, a D3 Javascript map library. Additional Javascript, HTML and CSS programing was required to display maps as a web-based interface. RESULTS: YPLL for all municipalities are displayed on a map of Puerto Rico for each of the ten leading causes of death and for all causes combined, so users may dynamically explore the impact of premature mortality. DISCUSSION: This work is the first step in providing the general public in Puerto Rico with user-friendly, interactive, visual access to public health data that is usually published in numerical, text-based media.


Subject(s)
Cause of Death , Internet , Mortality , Public Health/statistics & numerical data , Humans , Puerto Rico , Software
11.
F1000Res ; 4: 900, 2015.
Article in English | MEDLINE | ID: mdl-26535114

ABSTRACT

The khmer package is a freely available software library for working efficiently with fixed length DNA words, or k-mers. khmer provides implementations of a probabilistic k-mer counting data structure, a compressible De Bruijn graph representation, De Bruijn graph partitioning, and digital normalization. khmer is implemented in C++ and Python, and is freely available under the BSD license at  https://github.com/dib-lab/khmer/.

12.
Am J Cancer Res ; 5(1): 201-18, 2015.
Article in English | MEDLINE | ID: mdl-25628931

ABSTRACT

MicroRNAs (miRNAs) are a class of small noncoding RNAs that bind to 3'-untranslated (UTR) regions of target messenger RNAs to regulate protein synthesis. Reports have suggested that a set of specific miRNAs may be used as diagnostic and/or prognostic markers for astrocytoma grading. However, there are few studies of the specific miRNAs differentially expressed in each astrocytoma grade. MiRNA-containing total RNA was isolated from archived formalin-fixed, paraffin-embedded (FFPE) samples from WHO grade II-IV astrocytoma patients. The RNA was labeled and hybridized to Affymetrix miRNA 2.0 arrays. Statistical analysis identified several miRNAs differentially expressed in each astrocytoma grade. In particular, miR-27a, miR-210, and miR-1225-5p expression levels were able to differentiate grade IV from grade II and III astrocytomas as confirmed by real-time PCR. Kaplan-Meier survival analysis showed that disease progression occurred faster for Glioblastoma Multiforme (GBM) patients with a lower miR-27a expression level. Transfection of CRL-1690 GBM human cancer cells with a miR-27a oligonucleotide inhibitor followed by Real-time PCR identified six potential miR-27a target genes. Furthermore, the miR-27a oligonucleotide inhibitor induced CRL-1690 cell apoptosis. Taken together, our results provide additional miRNA signatures for distinguishing GBM from lower astrocytoma grades and suggest miR-27a as a prognostic and therapeutic target for GBM.

13.
Genome Res ; 24(8): 1316-33, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24823669

ABSTRACT

Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data-alignment to a reference genome and de novo assembly-and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti.


Subject(s)
Butterflies/genetics , Genome, Insect , Animals , Butterflies/anatomy & histology , Chromosome Mapping , Evolution, Molecular , Genetic Loci , Genetic Speciation , Genetic Variation , Phenotype , Phylogeny , Pigmentation , Wings, Animal/anatomy & histology
14.
Dev Dyn ; 240(7): 1826-40, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21648017

ABSTRACT

Urodele amphibians are unique among adult vertebrates in their ability to regenerate missing limbs. The process of limb regeneration requires several key tissues including a regeneration-competent wound epidermis called the regeneration epithelium (RE). We used microarray analysis to profile gene expression of the RE in the axolotl, a Mexican salamander. A list of 125 genes and expressed sequence tags (ESTs) showed a ≥1.5-fold expression in the RE than in a wound epidermis covering a lateral cuff wound. A subset of the RE ESTs and genes were further characterized for expression level changes over the time-course of regeneration. This study provides the first large scale identification of specific gene expression in the RE.


Subject(s)
Ambystoma mexicanum/physiology , Epithelium/physiology , Gene Expression Profiling/methods , Regeneration/physiology , Ambystoma mexicanum/genetics , Amphibian Proteins/genetics , Animals , Epithelium/metabolism , In Situ Hybridization , Oligonucleotide Array Sequence Analysis , Regeneration/genetics
15.
BMC Genomics ; 10: 262, 2009 Jun 08.
Article in English | MEDLINE | ID: mdl-19505337

ABSTRACT

BACKGROUND: Among deuterostomes, the regenerative potential is maximally expressed in echinoderms, animals that can quickly replace most injured organs. In particular, sea cucumbers are excellent models for studying organ regeneration since they regenerate their digestive tract after evisceration. However, echinoderms have been sidelined in modern regeneration studies partially because of the lack of genome-wide profiling approaches afforded by modern genomic tools.For the last decade, our laboratory has been using the sea cucumber Holothuria glaberrima to dissect the cellular and molecular events that allow for such amazing regenerative processes. We have already established an EST database obtained from cDNA libraries of normal and regenerating intestine at two different regeneration stages. This database now has over 7000 sequences. RESULTS: In the present work we used a custom-made microchip from Agilent with 60-mer probes for these ESTs, to determine the gene expression profile during intestinal regeneration. Here we compared the expression profile of animals at three different intestinal regeneration stages (3-, 7- and 14-days post evisceration) against the profile from normal (uneviscerated) intestines. The number of differentially expressed probes ranged from 70% at p < 0.05 to 39% at p < 0.001. Clustering analyses show specific profiles of expression for early (first week) and late (second week) regeneration stages. We used semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR) to validate the expression profile of fifteen microarray detected differentially expressed genes which resulted in over 86% concordance between both techniques. Most of the differentially expressed ESTs showed no clear similarity to sequences in the databases and might represent novel genes associated with regeneration. However, other ESTs were similar to genes known to be involved in regeneration-related processes, wound healing, cell proliferation, differentiation, morphological plasticity, cell survival, stress response, immune challenge, and neoplastic transformation. Among those that have been validated, cytoskeletal genes, such as actins, and developmental genes, such as Wnt and Hox genes, show interesting expression profiles during regeneration. CONCLUSION: Our findings set the base for future studies into the molecular basis of intestinal regeneration. Moreover, it advances the use of echinoderms in regenerative biology, animals that because of their amazing properties and their key evolutionary position, might provide important clues to the genetic basis of regenerative processes.


Subject(s)
Gene Expression Profiling , Intestines/physiology , Regeneration , Sea Cucumbers/genetics , Animals , Expressed Sequence Tags , Gene Library , Microarray Analysis
16.
J Neurosci ; 29(18): 5726-37, 2009 May 06.
Article in English | MEDLINE | ID: mdl-19420241

ABSTRACT

We previously proposed that DNA recombination/repair processes play a role in memory formation. Here, we examined the possible role of the fen-1 gene, encoding a flap structure-specific endonuclease, in memory consolidation of conditioned taste aversion (CTA). Quantitative real-time PCR showed that amygdalar fen-1 mRNA induction was associated to the central processing of the illness experience related to CTA and to CTA itself, but not to the central processing resulting from the presentation of a novel flavor. CTA also increased expression of the Fen-1 protein in the amygdala, but not the insular cortex. In addition, double immunofluorescence analyses showed that amygdalar Fen-1 expression is mostly localized within neurons. Importantly, functional studies demonstrated that amygdalar antisense knockdown of fen-1 expression impaired consolidation, but not short-term memory, of CTA. Overall, these studies define the fen-1 endonuclease as a new DNA recombination/repair factor involved in the formation of long-term memories.


Subject(s)
Avoidance Learning/physiology , Flap Endonucleases/metabolism , Memory/physiology , Taste , Amygdala/cytology , Amygdala/metabolism , Analysis of Variance , Animals , Astrocytes/metabolism , Behavior, Animal , Cell Line, Transformed , Flap Endonucleases/genetics , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Enzymologic/physiology , Glial Fibrillary Acidic Protein/metabolism , Male , Memory/drug effects , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Oligodeoxyribonucleotides, Antisense/pharmacology , Phosphopyruvate Hydratase/metabolism , RNA, Messenger/metabolism , Rats , Rats, Long-Evans
17.
Yeast ; 26(2): 111-24, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19235772

ABSTRACT

The euryhaline marine yeast Debaromyces hansenii is a model system for the study of processes related to osmoadaptation. In this study, microarray-based gene expression analyses of the entire genome of D. hansenii was used to study its response to osmotic stress. Differential gene expression, compared to control, was examined at three time points (0.5, 3 and 6 h) after exposure of D. hansenii cultures to high salt concentration. Among the 1.72% of genes showing statistically significant differences in expression, only 65 genes displayed at least three-fold increases in mRNA levels after treatment with 2 M NaCl. On the other hand, 44 genes showed three-fold repression. Upregulated as well as the downregulated genes were grouped into functional categories to identify biochemical processes possibly affected by osmotic stress and involved in osmoadaptation. The observation that only a limited number of genes are upregulated in D. hansenii in response to osmotic stress supports the notion that D. hansenii is pre-adapted to survive in extreme saline environments. In addition, since more than one-half of the upregulated genes encode for ribosomal proteins, it is possible that a translational gene regulatory mechanism plays a key role in D. hansenii's osmoregulatory response. Validation studies for ENA1 and for hyphal wall/cell elongation protein genes, using real-time PCR, confirmed patterns of gene expression observed in our microarray experiments. To our knowledge, this study is the first of its kind in this organism and provides the foundation for future molecular studies assessing the significance of the genes identified here in D. hansenii's osmoadaptation.


Subject(s)
Debaryomyces/physiology , Gene Expression Profiling , Genome, Fungal , Heat-Shock Response , Oligonucleotide Array Sequence Analysis/methods , Osmotic Pressure , Adaptation, Physiological , Debaryomyces/drug effects , Debaryomyces/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Molecular Sequence Data , Sodium Chloride/pharmacology
18.
Appl Environ Microbiol ; 74(19): 5905-12, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18689523

ABSTRACT

The hoatzin is unique among known avian species because of the fermentative function of its enlarged crop. A small-bodied flying foregut fermenter is a paradox, and this bird provides an interesting model to examine how diet selection and the gut microbiota contribute to maximizing digestive efficiency. Therefore, we characterized the bacterial population in the crop of six adult hoatzins captured from the wild. A total of 1,235 16S rRNA gene sequences were grouped into 580 phylotypes (67% of the pooled species richness sampled, based on Good's coverage estimator, with C(ACE) and Chao1 estimates of 1,709 and 1,795 species-level [99% identity] operational taxonomic units, respectively). Members of 9 of the approximately 75 known phyla in Bacteria were identified in this gut habitat; the Firmicutes were dominant (67% of sequences, belonging to the classes Clostridia, Mollicutes, and Bacilli), followed by the Bacteroidetes (30%, mostly in the order Bacteroidales), Proteobacteria (1.8%), and Lentisphaerae, Verrucomicrobia, TM7, Spirochaetes, Actinobacteria, and Aminanaerobia (all <0.1%). The novelty in this ecosystem is great; 94% of the phylotypes were unclassified at the "species" level and thus likely include novel cellulolytic lineages.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Birds/microbiology , Crop, Avian/microbiology , Animals , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
19.
Physiol Genomics ; 31(2): 203-15, 2007 Oct 22.
Article in English | MEDLINE | ID: mdl-17579180

ABSTRACT

Repair and regeneration are key processes for tissue maintenance, and their disruption may lead to disease states. Little is known about the molecular mechanisms that underline the repair and regeneration of the digestive tract. The sea cucumber Holothuria glaberrima represents an excellent model to dissect and characterize the molecular events during intestinal regeneration. To study the gene expression profile, cDNA libraries were constructed from normal, 3-day, and 7-day regenerating intestines of H. glaberrima. Clones were randomly sequenced and queried against the nonredundant protein database at the National Center for Biotechnology Information. RT-PCR analyses were made of several genes to determine their expression profile during intestinal regeneration. A total of 5,173 sequences from three cDNA libraries were obtained. About 46.2, 35.6, and 26.2% of the sequences for the normal, 3-days, and 7-days cDNA libraries, respectively, shared significant similarity with known sequences in the protein database of GenBank but only present 10% of similarity among them. Analysis of the libraries in terms of functional processes, protein domains, and most common sequences suggests that a differential expression profile is taking place during the regeneration process. Further examination of the expressed sequence tag dataset revealed that 12 putative genes are differentially expressed at significant level (R > 6). Experimental validation by RT-PCR analysis reveals that at least three genes (unknown C-4677-1, melanotransferrin, and centaurin) present a differential expression during regeneration. These findings strongly suggest that the gene expression profile varies among regeneration stages and provide evidence for the existence of differential gene expression.


Subject(s)
Expressed Sequence Tags , Gene Expression Regulation/physiology , Holothuria/genetics , Intestines/physiology , Animals , DNA, Complementary/genetics , Gene Expression Profiling , Gene Expression Regulation/genetics , Holothuria/physiology , Regeneration/genetics , Time Factors
20.
Neurobiol Learn Mem ; 80(1): 80-95, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12737936

ABSTRACT

Learning and long-term memory are thought to involve temporally defined changes in gene expression that lead to the strengthening of synaptic connections in selected brain regions. We used cDNA microarrays to study hippocampal gene expression in animals trained in a spatial discrimination-learning paradigm. Our analysis identified 19 genes that showed statistically significant changes in expression when comparing Nai;ve versus Trained animals. We confirmed the changes in expression for the genes encoding the nuclear protein prothymosin(alpha) and the delta-1 opioid receptor (DOR1) by Northern blotting or in situ hybridization. In additional studies, laser-capture microdissection (LCM) allowed us to obtain enriched neuronal populations from the dentate gyrus, CA1, and CA3 subregions of the hippocampus from Nai;ve, Pseudotrained, and spatially Trained animals. Real-time PCR examined the spatial learning specificity of hippocampal modulation of the genes encoding protein kinase B (PKB, also known as Akt), protein kinase C(delta) (PKC(delta)), cell adhesion kinase(beta) (CAK(beta), also known as Pyk2), and receptor protein tyrosine phosphatase(zeta/beta) (RPTP(zeta/beta)). These studies showed subregion specificity of spatial learning-induced changes in gene expression within the hippocampus, a feature that was particular to each gene studied. We suggest that statistically valid gene expression profiles generated with cDNA microarrays may provide important insights as to the cellular and molecular events subserving learning and memory processes in the brain.


Subject(s)
Discrimination Learning/physiology , Gene Expression Profiling , Hippocampus/metabolism , Animals , Blotting, Northern , In Situ Hybridization , Male , Maze Learning/physiology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Phosphorylation , Polymerase Chain Reaction , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Tyrosine Phosphatases/genetics , Protein Tyrosine Phosphatases/metabolism , Rats , Rats, Long-Evans , Receptor-Like Protein Tyrosine Phosphatases, Class 5 , Receptors, Opioid, delta/metabolism , Space Perception/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...