Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 29(19): 126604, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31445854

ABSTRACT

This manuscript describes the discovery of a series of macrocyclic inhibitors of FXIa with oral bioavailability. Assisted by structure based drug design and ligand bound X-ray crystal structures, the group linking the P1 moiety to the macrocyclic core was modified with the goal of reducing H-bond donors to improve pharmacokinetic performance versus 9. This effort resulted in the discovery of several cyclic P1 linkers, exemplified by 10, that are constrained mimics of the bioactive conformation displayed by the acrylamide linker of 9. These cyclic P1 linkers demonstrated enhanced bioavailability and improved potency.


Subject(s)
Drug Design , Drug Discovery , Factor XIa/antagonists & inhibitors , Macrocyclic Compounds/administration & dosage , Macrocyclic Compounds/chemistry , Serine Proteinase Inhibitors/administration & dosage , Serine Proteinase Inhibitors/chemistry , Administration, Oral , Biological Availability , Humans , Ligands , Macrocyclic Compounds/pharmacology , Models, Molecular , Molecular Structure , Serine Proteinase Inhibitors/pharmacology , Structure-Activity Relationship
2.
J Med Chem ; 60(23): 9703-9723, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29077405

ABSTRACT

Factor XIa (FXIa) is a blood coagulation enzyme that is involved in the amplification of thrombin generation. Mounting evidence suggests that direct inhibition of FXIa can block pathologic thrombus formation while preserving normal hemostasis. Preclinical studies using a variety of approaches to reduce FXIa activity, including direct inhibitors of FXIa, have demonstrated good antithrombotic efficacy without increasing bleeding. On the basis of this potential, we targeted our efforts at identifying potent inhibitors of FXIa with a focus on discovering an acute antithrombotic agent for use in a hospital setting. Herein we describe the discovery of a potent FXIa clinical candidate, 55 (FXIa Ki = 0.7 nM), with excellent preclinical efficacy in thrombosis models and aqueous solubility suitable for intravenous administration. BMS-962212 is a reversible, direct, and highly selective small molecule inhibitor of FXIa.


Subject(s)
Anticoagulants/chemistry , Anticoagulants/therapeutic use , Factor XIa/antagonists & inhibitors , Isoquinolines/chemistry , Isoquinolines/therapeutic use , Thrombosis/drug therapy , para-Aminobenzoates/chemistry , para-Aminobenzoates/therapeutic use , Animals , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Crystallography, X-Ray , Dogs , Drug Discovery , Factor XIa/chemistry , Factor XIa/metabolism , Humans , Isoquinolines/pharmacokinetics , Isoquinolines/pharmacology , Male , Molecular Docking Simulation , Rabbits , Rats , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Thrombosis/blood , para-Aminobenzoates/pharmacokinetics , para-Aminobenzoates/pharmacology
3.
Bioorg Med Chem ; 24(10): 2257-72, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27073051

ABSTRACT

Pyridine-based Factor XIa (FXIa) inhibitor (S)-2 was optimized by modifying the P2 prime, P1, and scaffold regions. This work resulted in the discovery of the methyl N-phenyl carbamate P2 prime group which maintained FXIa activity, reduced the number of H-bond donors, and improved the physicochemical properties compared to the amino indazole P2 prime moiety. Compound (S)-17 was identified as a potent and selective FXIa inhibitor that was orally bioavailable. Replacement of the basic cyclohexyl methyl amine P1 in (S)-17 with the neutral p-chlorophenyltetrazole P1 resulted in the discovery of (S)-24 which showed a significant improvement in oral bioavailability compared to the previously reported imidazole (S)-23. Additional improvements in FXIa binding affinity, while maintaining oral bioavailability, was achieved by replacing the pyridine scaffold with either a regioisomeric pyridine or pyrimidine ring system.


Subject(s)
Anticoagulants/chemistry , Anticoagulants/pharmacology , Factor XIa/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Administration, Oral , Animals , Anticoagulants/administration & dosage , Anticoagulants/pharmacokinetics , Blood Coagulation/drug effects , Crystallography, X-Ray , Dogs , Factor XIa/metabolism , Humans , Models, Molecular , Phenylcarbamates/administration & dosage , Phenylcarbamates/chemistry , Phenylcarbamates/pharmacokinetics , Phenylcarbamates/pharmacology , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics
4.
Bioorg Med Chem Lett ; 26(2): 472-478, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26704266

ABSTRACT

The synthesis, structural activity relationships (SAR), and selectivity profile of a potent series of phenylalanine diamide FXIa inhibitors will be discussed. Exploration of P1 prime and P2 prime groups led to the discovery of compounds with high FXIa affinity, good potency in our clotting assay (aPPT), and high selectivity against a panel of relevant serine proteases as exemplified by compound 21. Compound 21 demonstrated good in vivo efficacy (EC50=2.8µM) in the rabbit electrically induced carotid arterial thrombosis model (ECAT).


Subject(s)
Anilides/pharmacology , Factor XIa/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Phenylalanine/pharmacology , Anilides/chemical synthesis , Animals , Crystallography, X-Ray , Dogs , Phenylalanine/chemical synthesis , Rabbits , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 24(15): 3341-5, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24951330

ABSTRACT

In an effort to identify a potential back-up to apixaban (Eliquis®), we explored a series of diversified P4 moieties. Several analogs with substituted gem-dimethyl moieties replacing the terminal lactam of apixaban were identified which demonstrated potent FXa binding affinity (FXa Ki), good human plasma anticoagulant activity (PT EC2x), cell permeability, and oral bioavailability.


Subject(s)
Factor Xa Inhibitors/pharmacology , Factor Xa/metabolism , Pyrazoles/pharmacology , Pyridones/pharmacology , Administration, Oral , Animals , Biological Availability , Cell Membrane Permeability/drug effects , Dogs , Dose-Response Relationship, Drug , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/chemistry , Humans , Molecular Structure , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyridones/administration & dosage , Pyridones/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 18(2): 749-54, 2008 Jan 15.
Article in English | MEDLINE | ID: mdl-18054227

ABSTRACT

Efforts to further optimize the clinical candidate razaxaban have led to a new series of pyrazole-based factor Xa (fXa) inhibitors. Designed to prevent the potential formation of primary aniline metabolites in vivo, the nitrogen of the carboxamido linker between the pyrazole and proximal phenyl moiety of the razaxaban scaffold was replaced with a methylene group. The resulting ketones demonstrated excellent potency and selectivity for fXa but initially had poor oral bioavailability. Optimization by conversion from a P1 aminobenzisoxazole to a P1 p-methoxyphenyl residue, replacing the 3-trifluoromethylpyrazole with a 3-amidopyrazole, and employing a pyridone P4 group provided a fXa inhibitor with a potency and pharmacokinetic profile equivalent to that of razaxaban and improved selectivity over thrombin.


Subject(s)
Factor Xa Inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Animals , Caco-2 Cells , Dogs , Humans , Pyrazoles/pharmacokinetics , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship
7.
J Med Chem ; 50(22): 5339-56, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17914785

ABSTRACT

Efforts to identify a suitable follow-on compound to razaxaban (compound 4) focused on modification of the carboxamido linker to eliminate potential in vivo hydrolysis to a primary aniline. Cyclization of the carboxamido linker to the novel bicyclic tetrahydropyrazolopyridinone scaffold retained the potent fXa binding activity. Exceptional potency of the series prompted an investigation of the neutral P1 moieties that resulted in the identification of the p-methoxyphenyl P1, which retained factor Xa binding affinity and good oral bioavailability. Further optimization of the C-3 pyrazole position and replacement of the terminal P4 ring with a neutral heterocycle culminated in the discovery of 1-(4-methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4,5,6,7-tetrahydro-1H-pyrazolo[3,4-c]pyridine-3-carboxamide (apixaban, compound 40). Compound 40 exhibits a high degree of fXa potency, selectivity, and efficacy and has an improved pharmacokinetic profile relative to 4.


Subject(s)
Factor Xa Inhibitors , Fibrinolytic Agents/chemical synthesis , Pyrazoles/chemical synthesis , Pyridones/chemical synthesis , Administration, Oral , Animals , Biological Availability , Blood Coagulation/drug effects , Crystallography, X-Ray , Dogs , Fibrinolytic Agents/pharmacokinetics , Fibrinolytic Agents/pharmacology , Humans , In Vitro Techniques , Models, Molecular , Molecular Structure , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridones/pharmacokinetics , Pyridones/pharmacology , Rabbits , Structure-Activity Relationship
8.
Bioorg Med Chem Lett ; 16(21): 5584-9, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-16963264

ABSTRACT

The bicyclic dihydropyrazolopyridinone scaffold allowed for incorporation of multiple P1 moieties with subnanomolar binding affinities for blood coagulation factor Xa. The compound 3-[6-(2'-dimethylaminomethyl-biphenyl-4-yl)-7-oxo-3-trifluoro-methyl-4,5,6,7-tetrahydro-pyrazolo[3,4-c]pyridine-l-yl]-benzamide 6d shows good fXa potency, selectivity, in vivo efficacy and oral bioavailability. Compound 6d was selected for further pre-clinical evaluations.


Subject(s)
Benzamides/chemistry , Benzamides/pharmacology , Factor Xa Inhibitors , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Administration, Oral , Benzamides/administration & dosage , Benzamides/chemical synthesis , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/chemical synthesis , Humans , Treatment Outcome
9.
Bioorg Med Chem Lett ; 16(15): 4141-7, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16730984

ABSTRACT

Attempts to further optimize the pyrazole factor Xa inhibitors centered on masking the aryl aniline P4 moiety. Scaffold optimization resulted in the identification of a novel bicyclic pyrazolo-pyridinone scaffold which retained fXa potency. The novel bicyclic scaffold preserved all binding interactions observed with the monocyclic counterpart and importantly the carboxamido moiety was integrated within the scaffold making it less susceptible to hydrolysis. These efforts led to the identification of 1-[3-aminobenzisoxazol-5'-yl]-3-trifluoromethyl-6-[2'-(3-(R)-hydroxy-N-pyrrolidinyl)methyl-[1,1']-biphen-4-yl]-1,4,5,6-tetrahydropyrazolo-[3,4-c]-pyridin-7-one 6f (BMS-740808), a highly potent (fXa Ki=30 pM) with a rapid onset of inhibition (2.7x10(7) M-1 s-1) in vitro, selective (>1000-fold over other proteases), efficacious in the AVShunt thrombosis model, and orally bioavailable inhibitor of blood coagulation factor Xa.


Subject(s)
Factor Xa Inhibitors , Pyrazoles/pharmacology , Pyridones/pharmacology , Serine Proteinase Inhibitors/pharmacology , Models, Molecular , Pyrazoles/administration & dosage , Pyrazoles/chemistry , Pyridones/administration & dosage , Pyridones/chemistry , Serine Proteinase Inhibitors/administration & dosage , Serine Proteinase Inhibitors/chemistry
10.
J Med Chem ; 46(21): 4405-18, 2003 Oct 09.
Article in English | MEDLINE | ID: mdl-14521405

ABSTRACT

As part of an ongoing effort to prepare orally active factor Xa inhibitors using structure-based drug design techniques and molecular recognition principles, a systematic study has been performed on the pharmacokinetic profile resulting from replacing the benzamidine in the P1 position with less basic benzamidine mimics or neutral residues. It is demonstrated that lowering the pK(a) of the P1 ligand resulted in compounds (3-benzylamine, 15a; 1-aminoisoquinoline, 24a; 3-aminobenzisoxazole, 23a; 3-phenylcarboxamide, 22b; and 4-methoxyphenyl, 22a) with improved pharmacokinetic features mainly as a result of decreased clearance, increased volume of distribution, and enhanced oral absorption. This work resulted in a series of potent and orally bioavailable factor Xa inhibitors that ultimately led to the discovery of SQ311, 24a. SQ311, which utilizes a 1-aminoisoquinoline as the P1 ligand, inhibits factor Xa with a K(i) of 0.33 nM and demonstrates both good in vivo antithrombotic efficacy and oral bioavailability.


Subject(s)
Anticoagulants/chemical synthesis , Anticoagulants/pharmacology , Benzamidines/pharmacology , Factor Xa Inhibitors , Guanidines/pharmacology , Isoquinolines/chemical synthesis , Isoquinolines/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Animals , Anticoagulants/pharmacokinetics , Binding Sites/drug effects , Biological Availability , Crystallography, X-Ray , Dogs , Drug Design , Hydrogen Bonding , Indicators and Reagents , Intestinal Absorption , Molecular Mimicry , Rabbits , Structure-Activity Relationship , Thrombin/chemistry
11.
Chem Res Toxicol ; 15(1): 48-62, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11800597

ABSTRACT

The in vitro and in vivo disposition of DPC 423 was investigated in mice, rats, dogs and humans and the metabolites characterized by LC/MS, LC/NMR and high field-NMR. The rodents produced several metabolites that included an aldehyde (M1), a carboxylic acid (M2), a benzyl alcohol (M3), glutamate conjugates (M4 and M5), an acyl glucuronide (M6) and its isomers; a carbamyl glucuronide (M7); a phenol (M8) and its glucuronide conjugate (M9), two glutathione adducts (M10 and M11), a sulfamate conjugate (M12), isomers of an oxime metabolite (M13), and an amide (M14). Humans and dogs produced less complex metabolite profiles than rats. While unchanged DPC 423 was the major component in plasma and urine samples, differences in the metabolic disposition of this compound among species were noted. M1 is believed to be rapidly oxidized to the carboxylic acid (M2), which forms the potentially reactive acyl glucuronide (M6). The formation of novel glutamate conjugates (M4 and M5) and their role in depleting endogenous glutathione have been described previously. The carbamyl glucuronide M7, found as the major metabolite in rats and in other species, was considered nonreactive and was easily hydrolyzed to the parent compound in the presence of beta-glucuronidase. The identification of GSH adducts M10 and M11 led us to postulate the existence of at least two reactive intermediates responsible for their formation, an epoxide and possibly a nitrile oxide, respectively. Although the formation of GSH adducts such as M10 from epoxides has been described before, there are no reports to date describing the existence of a GSH adduct (M11) of an oxime. The formation of a sulfamate conjugate (M12) formed by direct coupling of sulfate to the nitrogen of benzylamine is described. A mechanism is proposed for the formation of the oxime (M13) that involves sequential oxidation of the benzylamine to the corresponding hydroxylamine and nitroso intermediate. The rearrangement of the nitroso intermediate is believed to produce the oxime (M13). In vitro studies suggested that both the oxime (M13) and the aldehyde (M1) were precursors to the carboxylic acid (M2). This is the first demonstration of carboxylic acid formation via an oxime intermediate produced from an amine. The stability of DPC423 in plasma obtained from several species was studied. Significant species differences in the plasma stability of DPC 423 were observed. The formation of the aldehyde metabolite (M1) was found to be catalyzed by a semicarbazide-sensitive monoamine oxidase (SSAO) found in plasma of rabbits, dogs, and rhesus monkeys. Rat, chimpanzee, and human plasma did not form M1.


Subject(s)
Factor Xa Inhibitors , Fibrinolytic Agents/pharmacokinetics , Pyrazoles/pharmacokinetics , Sulfones/pharmacokinetics , Adult , Aged , Animals , Chromatography, High Pressure Liquid , Dogs , Fibrinolytic Agents/analysis , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Mice , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Middle Aged , Pyrazoles/analysis , Rats , Rats, Sprague-Dawley , Species Specificity , Sulfones/analysis
SELECTION OF CITATIONS
SEARCH DETAIL