Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Geroscience ; 45(3): 1619-1648, 2023 06.
Article in English | MEDLINE | ID: mdl-36692592

ABSTRACT

Age represents a major risk factor in heart failure (HF). However, the mechanisms linking ageing and HF are not clear. We aimed to identify the functional, morphological and transcriptomic changes that could be attributed to cardiac ageing in a model of slowly progressing HF in Tgαq*44 mice in reference to the cardiac ageing process in FVB mice. In FVB mice, ageing resulted in the impairment of diastolic cardiac function and in basal coronary flow (CF), perivascular and interstitial fibrosis without changes in the cardiac activity of angiotensin-converting enzyme (ACE) or aldosterone plasma concentration. In Tgαq*44 mice, HF progression was featured by the impairment of systolic and diastolic cardiac function and in basal CF that was associated with a distinct rearrangement of the capillary architecture, pronounced perivascular and interstitial fibrosis, progressive activation of cardiac ACE and systemic angiotensin-aldosterone-dependent pathways. Interestingly, cardiac ageing genes and processes were represented in Tgαq*44 mice not only in late but also in early phases of HF, as evidenced by cardiac transcriptome analysis. Thirty-four genes and 8 biological processes, identified as being ageing related, occurred early and persisted along HF progression in Tgαq*44 mice and were mostly associated with extracellular matrix remodelling and fibrosis compatible with perivascular fibrosis resulting in coronary microvascular dysfunction (CMD) in Tgαq*44 mice. In conclusion, accelerated and persistent cardiac ageing contributes to the pathophysiology of chronic HF in Tgαq*44 mice. In particular, prominent perivascular fibrosis of microcirculation resulting in CMD represents an accelerated cardiac ageing phenotype that requires targeted treatment in chronic HF.


Subject(s)
Aldosterone , Heart Failure , Mice , Animals , Mice, Transgenic , Heart Failure/metabolism , Chronic Disease , Mice, Inbred Strains , Aging , Angiotensins , Fibrosis
2.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35563564

ABSTRACT

The intestinal microbiome composition and dietary supplementation with psychobiotics can result in neurochemical alterations in the brain, which are possible due to the presence of the brain-gut-microbiome axis. In the present study, magnetic resonance spectroscopy (MRS) and behavioural testing were used to evaluate whether treatment with Lacticaseibacillus rhamnosus JB-1 (JB­1) bacteria alters brain metabolites' levels and behaviour during continuous exposure to chronic stress. Twenty Wistar rats were subjected to eight weeks of a chronic unpredictable mild stress protocol. Simultaneously, half of them were fed with JB-1 bacteria, and the second half was given a daily placebo. Animals were examined at three-time points: before starting the stress protocol and after five and eight weeks of stress onset. In the elevated plus maze behavioural test the placebo group displayed increased anxiety expressed by almost complete avoidance of exploration, while the JB-1 dietary supplementation mitigated anxiety which resulted in a longer exploration time. Hippocampal MRS measurements demonstrated a significant decrease in glutamine + glutathione concentration in the placebo group compared to the JB-1 bacteria-supplemented group after five weeks of stress. With the progression of stress the decrease of glutamate, glutathione, taurine, and macromolecular concentrations were observed in the placebo group as compared to baseline. The level of brain metabolites in the JB-1-supplemented rats were stable throughout the experiment, with only the taurine level decreasing between weeks five and eight of stress. These data indicated that the JB-1 bacteria diet might stabilize levels of stress-related neurometabolites in rat brain and could prevent the development of anxiety/depressive-like behaviour.


Subject(s)
Lacticaseibacillus rhamnosus , Animals , Behavior, Animal , Eating , Glutathione/metabolism , Lacticaseibacillus rhamnosus/metabolism , Rats , Rats, Wistar , Stress, Psychological , Taurine/metabolism
3.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055109

ABSTRACT

Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood-brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.


Subject(s)
Aminolevulinic Acid/metabolism , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , ATP-Binding Cassette Transporters/metabolism , Blood-Brain Barrier/metabolism , Brain Neoplasms/metabolism , Cell Membrane/metabolism , Glioma/metabolism , Humans , Neoplasm Proteins/metabolism , Optical Imaging
4.
Sci Rep ; 11(1): 19040, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34561488

ABSTRACT

Chemical exchange saturation transfer (CEST) MRI was performed for the evaluation of cerebral metabolic changes in a rat model of depressive-like disease induced by chronic unpredictable mild stress (CUMS). CEST Z-spectra were acquired on a 7 T MRI with two saturation B1 amplitudes (0.5 and 0.75 µT) to measure the magnetization transfer ratio (MTR), CEST and relayed nuclear Overhauser effect (rNOE). Cerebral cortex and hippocampus were examined in two groups of animals: healthy control (n = 10) and stressed (n = 14), the latter of which was exposed to eight weeks of the CUMS protocol. The stressed group Z-spectrum parameters, primarily MTRs, were significantly lower than in controls, at all selected frequency offsets (3.5, 3.0, 2.0, - 3.2, - 3.6 ppm) in the cortex (the largest difference of ~ 3.5% at - 3.6 ppm, p = 0.0005) and the hippocampus (MTRs measured with a B1 = 0.5 µT). The hippocampal rNOE contributions decreased significantly in the stressed brains. Glutamate concentration (assessed using ELISA) and MTR at 3 ppm correlated positively in both brain regions. GABA concentration also correlated positively with CEST contributions in both cerebral areas, while such correlation with MTR was positive in hippocampus, and nonsignificant in cortex. Results indicate that CEST is sensitive to neurometabolic changes following chronic stress exposure.


Subject(s)
Cerebral Cortex/diagnostic imaging , Depression/diagnostic imaging , Depression/pathology , Hippocampus/diagnostic imaging , Magnetic Resonance Imaging/methods , Stress, Psychological/complications , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Animals , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Chronic Disease , Depression/etiology , Depression/metabolism , Disease Models, Animal , Glutamates/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Rats , gamma-Aminobutyric Acid/metabolism
5.
Biomolecules ; 11(7)2021 07 07.
Article in English | MEDLINE | ID: mdl-34356624

ABSTRACT

The brain-gut-microbiome axis is a bidirectional communication pathway between the gut microbiota and the central nervous system. The growing interest in the gut microbiota and mechanisms of its interaction with the brain has contributed to the considerable attention given to the potential use of probiotics, prebiotics and postbiotics in the prevention and treatment of depressive disorders. This review discusses the up-to-date findings in preclinical and clinical trials regarding the use of pro-, pre- and postbiotics in depressive disorders. Studies in rodent models of depression show that some of them inhibit inflammation, decrease corticosterone level and change the level of neurometabolites, which consequently lead to mitigation of the symptoms of depression. Moreover, certain clinical studies have indicated improvement in mood as well as changes in biochemical parameters in patients suffering from depressive disorders.


Subject(s)
Brain/metabolism , Depressive Disorder , Gastrointestinal Microbiome , Prebiotics , Probiotics/therapeutic use , Brain/microbiology , Depressive Disorder/metabolism , Depressive Disorder/microbiology , Depressive Disorder/therapy , Humans , Inflammation/metabolism , Inflammation/microbiology
6.
Brain Sci ; 12(1)2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35053797

ABSTRACT

Alzheimer's disease (AD) is one of the most common causes of dementia and difficult to study as the pool of subjects is highly heterogeneous. Saturation transfer (ST) magnetic resonance imaging (MRI) methods are quantitative modalities with potential for non-invasive identification and tracking of various aspects of AD pathology. In this review we cover ST-MRI studies in both humans and animal models of AD over the past 20 years. A number of magnetization transfer (MT) studies have shown promising results in human brain. Increased computing power enables more quantitative MT studies, while access to higher magnetic fields improves the specificity of chemical exchange saturation transfer (CEST) techniques. While much work remains to be done, results so far are very encouraging. MT is sensitive to patterns of AD-related pathological changes, improving differential diagnosis, and CEST is sensitive to particular pathological processes which could greatly assist in the development and monitoring of therapeutic treatments of this currently incurable disease.

7.
Nutr Res ; 82: 44-57, 2020 10.
Article in English | MEDLINE | ID: mdl-32961399

ABSTRACT

Major depressive disorder is a stress-related disease associated with brain metabolic dysregulation in the glutamine-glutamate/γ-aminobutyric acid (Gln-Glu/GABA) cycle. Recent studies have demonstrated that microbiome-gut-brain interactions have the potential to influence mental health. The hypothesis of this study was that Lactobacillus rhamnosus JB-1 (LR-JB1™) dietary supplementation has a positive impact on neuro-metabolism which can be quantified in vivo using magnetic resonance spectroscopy (MRS). A rat model of depressive-like disorder, chronic unpredictable mild stress (CUMS), was used. Baseline comparisons of MRS and behavior were obtained in a control group and in a stressed group subjected to CUMS. Of the 22 metabolites measured using MRS, stressed rats had significantly lower concentrations of GABA, glutamate, glutamine + glutathione, glutamate + glutamine, total creatine, and total N-acetylaspartate (tNAA). Stressed rats were then separated into 2 groups and supplemented with either LR-JB1™ or placebo and re-evaluated after 4 weeks of continued CUMS. The LR-JB1™ microbiotic diet restored these metabolites to levels previously observed in controls, while the placebo diet resulted in further significant decrease of glutamate, total choline, and tNAA. LR-JB1™ treated animals also exhibited calmer and more relaxed behavior, as compared with placebo treated animals. In summary, significant cerebral biochemical downregulation of major brain metabolites following prolonged stress were measured in vivo using MRS, and these decreases were reversed using a microbiotic dietary supplement of LR-JB1™, even in the presence of continued stress, which also resulted in a reduction of stress-induced behavior in a rat model of depressive-like disorder.


Subject(s)
Brain/metabolism , Depressive Disorder/diet therapy , Dietary Supplements , Lacticaseibacillus rhamnosus , Stress, Psychological/diet therapy , Animals , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Behavior, Animal , Choline/metabolism , Depressive Disorder/metabolism , Disease Progression , Glutamic Acid/metabolism , Glutamine/metabolism , Glutathione/metabolism , Magnetic Resonance Spectroscopy , Male , Rats , Rats, Wistar , Stress, Psychological/metabolism , gamma-Aminobutyric Acid/metabolism
8.
J Appl Physiol (1985) ; 124(1): 52-65, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28970203

ABSTRACT

Here, we analyzed systemic (plasma) and local (heart/aorta) changes in ACE/ACE-2 balance in Tgαq*44 mice in course of heart failure (HF). Tgαq*44 mice with cardiomyocyte-specific Gαq overexpression and late onset of HF were analyzed at different age for angiotensin pattern in plasma, heart, and aorta using liquid chromatography/mass spectrometry, for progression of HF by in vivo magnetic resonance imaging under isoflurane anesthesia, and for physical activity by voluntary wheel running. Six-month-old Tgαq*44 mice displayed decreased ventricle radial strains and impaired left atrial function. At 8-10 mo, Tgαq*44 mice showed impaired systolic performance and reduced voluntary wheel running but exhibited preserved inotropic reserve. At 12 mo, Tgαq*44 mice demonstrated a severe impairment of basal cardiac performance and modestly compromised inotropic reserve with reduced voluntary wheel running. Angiotensin analysis in plasma revealed an increase in concentration of angiotensin-(1-7) in 6- to 10-mo-old Tgαq*44 mice. However, in 12- to 14-mo-old Tgαq*44 mice, increased angiotensin II was noted with a concomitant increase in Ang III, Ang IV, angiotensin A, and angiotensin-(1-10). The pattern of changes in the heart and aorta was also compatible with activation of ACE2, followed by activation of the ACE pathway. In conclusion, mice with cardiomyocyte Gαq protein overexpression develop HF that is associated with activation of the systemic and the local ACE/Ang II pathway. However, it is counterbalanced by a prominent ACE2/Ang-(1-7) activation, possibly allowing to delay decompensation. NEW & NOTEWORTHY Changes in ACE/ACE-2 balance were analyzed based on measurements of a panel of nine angiotensins in plasma, heart, and aorta of Tgαq*44 mice in relation to progression of heart failure (HF) characterized by multiparametric MRI and exercise performance. The early stage of HF was associated with upregulation of the ACE2/angiotensin-(1-7) pathway, whereas the end-stage HF was associated with downregulation of ACE2/angiotensin-(1-7) and upregulation of the ACE/Ang II pathway. ACE/ACE-2 balance seems to determine the decompensation of HF in this model.


Subject(s)
Angiotensins/metabolism , Heart Failure/metabolism , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2 , Animals , Cardiac Imaging Techniques , Disease Progression , Female , Heart Failure/diagnostic imaging , Magnetic Resonance Imaging , Mice , Motor Activity
9.
NMR Biomed ; 29(6): 833-40, 2016 06.
Article in English | MEDLINE | ID: mdl-27146203

ABSTRACT

ApoE/LDLR(-/-) mice represent a reliable model of atherosclerosis. However, it is not clear whether cardiac performance is impaired in this murine model of atherosclerosis. Here, we used MRI to characterize cardiac performance in vivo in apoE/LDLR(-/-) mice with advanced atherosclerosis. Six-month-old apoE/LDLR(-/-) mice and age-matched C57BL/6J mice (control) were examined using highly time-resolved cine-MRI [whole-chamber left ventricle (LV) imaging] and MR tagging (three slices: basal, mid-cavity and apical). Global and regional measures of cardiac function included LV volumes, kinetics, time-dependent parameters, strains and rotations. Histological analysis was performed using OMSB (orceine with Martius, Scarlet and Blue) and ORO (oil red-O) staining to demonstrate the presence of advanced coronary atherosclerosis. MR-tagging-based strain analysis in apoE/LDLR(-/-) mice revealed an increased frequency of radial and circumferential systolic stretch (25% and 50% of segments, respectively, p ≤ 0.012), increased radial post-systolic strain index (45% of segments, p = 0.009) and decreased LV untwisting rate (-30.3° (11.6°)/cycle, p = 0.004) when compared with control mice. Maximal strains and LV twist were unchanged. Most of the cine-MRI-based LV functional and anatomical parameters also remained unchanged in apoE/LDLR(-/-) mice, with only a lower filling rate, longer filling time, shorter isovolumetric contraction time and slower heart rate observed in comparison with control mice. The coronary arteries displayed severe atherosclerosis, as evidenced by histological analysis. Using comprehensive MRI methods, we have demonstrated that, despite severe coronary atherosclerosis in six-month-old apoE/LDLR(-/-) mice, cardiac performance including global parameters, twist and strains, was well preserved. Only subtle diastolic alterations, possibly of ischemic background, were uncovered. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Cardiac Imaging Techniques , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/physiopathology , Magnetic Resonance Imaging, Cine/methods , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Animals , Coronary Artery Disease/complications , Disease Progression , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Reproducibility of Results , Sensitivity and Specificity , Severity of Illness Index , Ventricular Dysfunction, Left/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...