Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Insects ; 15(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38249051

ABSTRACT

Mosquito-borne diseases (MBDs) are important emerging diseases that affect humans and animals. Zoological parks can work as early warning systems for the occurrence of MBDs. In this study, we characterized the mosquito fauna captured inside Lisbon Zoo from May 2018 to November 2019. An average of 2.4 mosquitos per trap/night were captured. Five mosquito species potentially causing MBDs, including Culex pipiens biotypes, were found in the zoo. The sympatric occurrence of Culex pipiens biotypes represents a risk factor for the epizootic transmission of West Nile virus and Usutu virus. The mosquito occurrence followed the expected seasonality, with the maximum densities during summer months. However, mosquito activity was detected in winter months in low numbers. The minimum temperature and the relative humidity (RH) on the day of capture showed a positive effect on Culex pipiens abundance. Contrary, the RH the week before capture and the average precipitation the week of capture had a negative effect. No invasive species were identified, nor have flaviviruses been detected in the mosquitoes. The implementation of biosecurity measures regarding the hygiene of the premises and the strict control of all the animals entering the zoo can justify the low prevalence of mosquitoes and the absence of flavivirus-infected mosquitoes.

2.
Trop Med Infect Dis ; 9(1)2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38276633

ABSTRACT

In the Old World, phlebotomine sand flies from the genus Phlebotomus are implicated in the transmission of Leishmania spp. parasites (Kinetoplastida: Trypanosomatidae) and viruses belonging to the genus Phlebovirus (Bunyavirales: Phenuiviridae). Two of the five sand fly species known to occur in Portugal, Phlebotomus perniciosus and Ph. ariasi, the former being the most ubiquitous, are recognized vectors of Leishmania infantum, which causes visceral leishmaniasis, the most prevalent form of leishmaniasis in the country. Phlebotomus perniciosus is also the vector of the neurotropic Toscana virus, which can cause aseptic meningitis. Entomological surveillance is essential to provide fundamental data about the presence of vectors and the pathogens they can carry. As such, and given the lack of data in Portugal, an entomological survey took place in the Algarve, the southernmost region of the country, from May to October 2018. Polymerase chain reaction assays were performed in order to detect the presence of the above-mentioned pathogens in sand fly pools. Not only were both Leishmania parasites and phleboviruses detected during this study, but more importantly, it was the first time their co-circulation was verified in the same sand fly population collected in Portugal.

3.
GigaByte ; 2022: gigabyte57, 2022.
Article in English | MEDLINE | ID: mdl-36824512

ABSTRACT

Human and animal vector-borne diseases, particularly mosquito-borne diseases, are emerging or re-emerging worldwide. Six Aedes invasive mosquito (AIM) species were introduced to Europe since the 1970s: Aedes aegypti, Ae. albopictus, Ae. japonicus, Ae. koreicus, Ae. atropalpus and Ae. triseriatus. Here, we report the results of AIMSurv2020, the first pan-European surveillance effort for AIMs. Implemented by 42 volunteer teams from 24 countries. And presented in the form of a dataset named "AIMSurv Aedes Invasive Mosquito species harmonized surveillance in Europe. AIM-COST Action. Project ID: CA17108". AIMSurv2020 harmonizes field surveillance methodologies for sampling different AIMs life stages, frequency and minimum length of sampling period, and data reporting. Data include minimum requirements for sample types and recommended requirements for those teams with more resources. Data are published as a Darwin Core archive in the Global Biodiversity Information Facility- Spain, comprising a core file with 19,130 records (EventID) and an occurrences file with 19,743 records (OccurrenceID). AIM species recorded in AIMSurv2020 were Ae. albopictus, Ae. japonicus and Ae. koreicus, as well as native mosquito species.

4.
PLoS Negl Trop Dis ; 14(9): e0008657, 2020 09.
Article in English | MEDLINE | ID: mdl-32997656

ABSTRACT

Aedes albopictus, along with Ae. aegypti, are key arbovirus vectors that have been expanding their geographic range over the last decades. In 2017, Ae. albopictus was detected for the first time at two distinct locations in Portugal. In order to understand how the Ae. albopictus populations recently introduced in Portugal are genetically related and which is their likely route of invasion, we performed an integrative cytochrome C oxidase I gene (COI)- and mitogenome-based phylogeographic analysis of mosquitoes samples collected in Portugal in 2017 and 2018 in the context of the global Ae. albopictus diversity. COI-based analysis (31 partial sequences obtained from 83 mosquitoes) revealed five haplotypes (1 to 5), with haplotype 1 (which is widely distributed in temperate areas worldwide) being detected in both locations. Haplotypes 2 and 3 were exclusively found in Southern region (Algarve), while haplotype 4 and 5 were only detected in the North of Portugal (Penafiel, Oporto region). Subsequent high discriminatory analyses based on Ae. albopictus mitogenome (17 novel sequences) not only confirmed a high degree of genetic variability within and between populations at both geographic locations (compatible with the Ae. albopictus mosquito populations circulating in Europe), but also revealed two mitogenome mutational signatures not previously reported at worldwide level. While our results generally sustain the occurrence of multiple introduction events, fine mitogenome sequence inspection further indicates a possible Ae. albopictus migration within the country, from the Northern introduction locality to the Southern region. In summary, the observed scenario of high Ae. albopictus genetic diversity in Portugal, together with the detection of mosquitoes in successive years since 2017 in Algarve and Penafiel, points that both Ae. albopictus populations seem to be already locally established, as its presence has been reported for three consecutive years, raising the public health awareness for future mosquito-borne diseases outbreaks.


Subject(s)
Aedes/genetics , Genetic Variation , Genome, Mitochondrial/genetics , Mosquito Vectors/genetics , Aedes/classification , Aedes/virology , Animals , Arboviruses , Electron Transport Complex IV/genetics , Female , Haplotypes , High-Throughput Nucleotide Sequencing , Mosquito Vectors/virology , Phylogeography , Portugal , Sequence Analysis, DNA
5.
Acta Trop ; 206: 105440, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32156617

ABSTRACT

Despite reduction in the prevalence of malaria, Guinea-Bissau (GB) is still widely affected by the disease that is primarily vectored by Anopheles gambiae s.l. mosquitoes. Monitoring mosquito susceptibility and investigating the insecticide resistance status is an integral part of malaria control actions. Here, mosquito populations from five regions of GB: Bafatá, Bissau, Buba, Cacheu and Gabu were monitored for species ID and insecticide resistance, using diagnostic and intensity WHO bioassays, as well as molecular assays. Phenotypic and molecular identification of species showed the presence of An. gambiae s.s. (S form), An. coluzzii (M form) and An. arabiensis, as well as rare An. arabiensis/ An. gambiae hybrids. Resistance to permethrin and deltamethrin was found in all Anopheles populations assayed, with the intensity of resistance for permethrin being moderate to high, as confirmed by bioassays performed at concentration intensities of 5X and 10X. Consistent to these findings, molecular analysis showed a higher frequency of knock-down resistance (kdr) mutations (L1014F, L1014S, reaching > 90% in some areas) compared to previous studies in the same region, as well as detected for the first time the presence of the super kdr mutation (N1575Y) in GB. The "iAche" (G119S) resistance mutation was also found in GB in low frequencies (up to 12.41%). Additionally, the synergistic PBO-permethrin bioassays suggested partial involvement of non target (metabolic and/or reduced penetration) resistance mechanism. Expression analysis of known pyrethroid metabolisers indicated the slight overexpression and possible association of the cytochrome P450s CYP6Z1, CYP4G16 with the pyrethroid resistance phenotype. The findings should guide future evidence-based resistance management strategies in GB.


Subject(s)
Anopheles/genetics , Insecticide Resistance/genetics , Malaria/transmission , Mosquito Vectors/genetics , Animals , Anopheles/drug effects , Female , Guinea-Bissau , Insecticides/pharmacology , Male , Nitriles/pharmacology , Permethrin/pharmacology , Pyrethrins/pharmacology
6.
Article in English | MEDLINE | ID: mdl-32079356

ABSTRACT

BACKGROUND: Mosquito-borne viruses, such as Zika, dengue, yellow fever, and chikungunya, are important causes of human diseases nearly worldwide. The greatest health risk for arboviral disease outbreaks is the presence of the most competent and highly invasive domestic mosquito, Aedes aegypti. In Cabo Verde, two recent arbovirus outbreaks were reported, a dengue outbreak in 2009, followed by a Zika outbreak in 2015. This study is the first entomological survey for Ae. aegypti that includes all islands of Cabo Verde archipelago, in which we aim to evaluate the actual risk of vector-borne arboviruses as a continuous update of the geographical distribution of this species. METHODS: In order to assess its current distribution and abundance, we undertook a mosquito larval survey in the nine inhabited islands of Cabo Verde from November 2018 to May 2019. Entomological larval survey indices were calculated, and the abundance analyzed. We collected and identified 4045 Ae. aegypti mosquitoes from 264 positive breeding sites in 22 municipalities and confirmed the presence of Ae. aegypti in every inhabited island. Results: Water drums were found to be the most prevalent containers (n = 3843; 62.9%), but puddles (n = 27; 0.4%) were the most productive habitats found. The overall average of the House, Container, and Breteau larval indices were 8.4%, 4.4%, and 10.9, respectively. However, 15 out of the 22 municipalities showed that the Breteau Index was above the epidemic risk threshold. CONCLUSION: These results suggest that if no vector control measures are considered to be in place, the risk of new arboviral outbreaks in Cabo Verde is high. The vector control strategy adopted must include measures of public health directed to domestic water storage and management.


Subject(s)
Aedes , Animal Distribution , Arbovirus Infections/transmission , Mosquito Vectors , Aedes/virology , Animals , Arbovirus Infections/prevention & control , Cabo Verde , Chikungunya Fever , Dengue , Dengue Virus , Disease Outbreaks/prevention & control , Ecosystem , Humans , Insect Vectors/virology , Larva , Mosquito Vectors/virology , Public Health , Risk Assessment , Zika Virus , Zika Virus Infection
7.
Article in English | MEDLINE | ID: mdl-29690531

ABSTRACT

The Asian tiger mosquito Aedes albopictus is an invasive mosquito originating from the Asia-Pacific region. This species is of major concern to public and veterinary health because of its vector role in the transmission of several pathogens, such as chikungunya, dengue, and Zika viruses. In Portugal, a National Vector Surveillance Network (REde de VIgilância de VEctores—REVIVE) is responsible for the surveillance of autochthonous, but also invasive, mosquito species at points of entry, such as airports, ports, storage areas, and specific border regions with Spain. At these locations, networks of mosquito traps are set and maintained under surveillance throughout the year. In September 2017, Ae. albopictus was detected for the first time in a tyre company located in the North of Portugal. Molecular typing was performed, and a preliminary phylogenetic analysis indicated a high similarity with sequences of Ae. albopictus collected in Europe. A prompt surveillance response was locally implemented to determine its dispersal and abundance, and adult mosquitoes were screened for the presence of arboviral RNA. A total of 103 specimens, 52 immatures and 51 adults, were collected. No pathogenic viruses were detected. Despite the obtained results suggest low abundance of the population locally introduced, the risk of dispersal and potential establishment of Ae. albopictus in Portugal has raised concern for autochthonous mosquito-borne disease outbreaks.


Subject(s)
Aedes/genetics , Aedes/virology , Arboviruses/isolation & purification , Introduced Species/statistics & numerical data , Mosquito Vectors/genetics , Mosquito Vectors/virology , Zika Virus/isolation & purification , Aedes/physiology , Animals , Disease Vectors , Mosquito Vectors/physiology , Phylogeny , Portugal
8.
J Med Entomol ; 49(3): 717-21, 2012 May.
Article in English | MEDLINE | ID: mdl-22679881

ABSTRACT

The host blood-feeding patterns of mosquito vectors affects the likelihood of human exposure to zoonotic pathogens, including West Nile Virus (family Flaviviridae, genus Flavivirus, WNV). In Portugal, data are unavailable regarding the blood-feeding habits of common mosquito species, including Culex pipiens L., considered the primary vector of WNV to humans. The sources of bloodmeals in 203 blood-fed mosquitoes of nine species collected from June 2007 to November 2010 in 34 Portuguese counties were analyzed by sequencing cytochrome-b partial fragments. Cx. pipiens was the most common species collected and successfully analyzed (n = 135/78). In addition, blood-fed females of the following species were analyzed: Ochlerotatus caspius Pallas (n = 20), Culex theileri Theobald (n = 16), Anopheles maculipennis s.l. Meigen (n = 10), Culiseta longiareolata Macquart (n = 7), Aedes aegypti L. (n = 6), Culex perexiguus Theobald (n = 3), Culiseta annulata Schrank (n = 3), and Ochlerotatus detritus Haliday (n = 3). The Cx. pipiens mosquitoes fed predominantly on birds (n = 55/78, 70.5%), with a high diversity of avian species used as hosts, although human blood was identified in 18 specimens (18/78, 23.1%). No significant differences were found between the host-feeding patterns of blood-fed Cx. pipiens collected in residential and nonresidential habitats. The occurrence of human derived blood meals and the presence of a mix avian-human bloodmeal accordingly suggest this species as a potential vector of WNV. Therefore, in Portugal, Cx. pipiens may play a role both in the avian-to-avian enzootic WNV cycle and in the avian-to-mammal transmission. In this context, the identity of Cx. pipiens (considering the forms molestus and pipiens) and the potential consequence on feeding behavior and WNV transmission are discussed.


Subject(s)
Culicidae , Feeding Behavior , Host Specificity , Insect Vectors , Animals , Female , Humans , Portugal , West Nile Fever/transmission , West Nile virus
9.
J Gen Virol ; 93(Pt 6): 1215-1225, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22377581

ABSTRACT

The genus Flavivirus, family Flaviviridae, includes a number of important arthropod-transmitted human pathogens such as dengue viruses, West Nile virus, Japanese encephalitis virus and yellow fever virus. In addition, the genus includes flaviviruses without a known vertebrate reservoir, which have been detected only in insects, particularly in mosquitoes, such as cell fusing agent virus, Kamiti River virus, Culex flavivirus, Aedes flavivirus, Quang Binh virus, Nakiwogo virus and Calbertado virus. Reports of the detection of these viruses with no recognized pathogenic role in humans are increasing in mosquitoes collected around the world, particularly in those sampled in entomological surveys targeting pathogenic flaviviruses. The presence of six potential flaviviruses, detected from independent European arbovirus surveys undertaken in the Czech Republic, Italy, Portugal, Spain and the UK between 2007 and 2010, is reported in this work. Whilst the Aedes flaviviruses, detected in Italy from Aedes albopictus mosquitoes, had already been isolated in Japan, the remaining five viruses have not been reported previously: one was detected in Italy, Portugal and Spain from Aedes mosquitoes (particularly from Aedes caspius), one in Portugal and Spain from Culex theileri mosquitoes, one in the Czech Republic and Italy from Aedes vexans, one in the Czech Republic from Aedes vexans and the last in the UK from Aedes cinereus. Phylogenetic analysis confirmed the close relationship of these putative viruses to other insect-only flaviviruses.


Subject(s)
Culex/virology , Flavivirus Infections/virology , Flavivirus/isolation & purification , Insect Vectors/virology , Animals , Europe , Flavivirus/classification , Flavivirus/genetics , Humans , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...