Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2945, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600094

ABSTRACT

An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.


Subject(s)
Axons , Neurons , Humans , Axons/physiology , Neurons/physiology , Organoids/physiology , Brain
2.
Front Bioeng Biotechnol ; 12: 1259138, 2024.
Article in English | MEDLINE | ID: mdl-38347914

ABSTRACT

Motor nerve organoids could be generated by culturing a spheroid of motor neurons differentiated from human induced pluripotent stem (iPS) cells within a polydimethylsiloxane (PDMS) chip which guides direction and fasciculation of axons extended from the spheroid. To isolate axon bundles from motor nerve organoids, we developed a rapid laser dissection method based on localized photothermal combustion. By illuminating a blue laser on a black mark on the culture device using a dry-erase marker, we induced highly localized heating near the axon bundles. Moving the laser enabled spatial control over the local heating and severing of axon bundles. This laser dissection requires a black mark, as other colors did not produce the same localized heating effect. A CO2 laser destroyed the tissue and the device and could not be used. With this simple, economical laser dissection technique, we could rapidly collect abundant pure axon samples from motor nerve organoids for biochemical analysis. Extracted axonal proteins and RNA were indistinguishable from manual dissection. This method facilitates efficient axon isolation for further analyses.

3.
bioRxiv ; 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37693409

ABSTRACT

Parkinson's disease (PD) is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD, however the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T-mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. Here, we used 2-dimensional cultures of human iPSC-derived microglia and transplantation of these cells into the mouse brain to assess the effects of the A53T mutation on human microglia. We found that A53T-mutant human microglia had an intrinsically increased propensity towards pro-inflammatory activation upon inflammatory stimulus. Additionally, A53T mutant microglia showed a strong decrease in catalase expression in non-inflammatory conditions, and increased oxidative stress. Our results indicate that A53T mutant human microglia display cell-autonomous phenotypes that may worsen neuronal damage in early-onset PD.

4.
Bio Protoc ; 13(3)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36816992

ABSTRACT

In addition to cytosolic protein synthesis, mitochondria also utilize another translation system that is tailored for mRNAs encoded in the mitochondrial genome. The importance of mitochondrial protein synthesis has been exemplified by the diverse diseases associated with in organello translation deficiencies. Various methods have been developed to monitor mitochondrial translation, such as the classic method of labeling newly synthesized proteins with radioisotopes and the more recent ribosome profiling. However, since these methods always assess the average cell population, measuring the mitochondrial translation capacity in individual cells has been challenging. To overcome this issue, we recently developed mito-fluorescent noncanonical amino acid tagging (FUNCAT) fluorescence-activated cell sorting (FACS), which labels nascent peptides generated by mitochondrial ribosomes with a methionine analog, L-homopropargylglycine (HPG), conjugates the peptides with fluorophores by an in situ click reaction, and detects the signal in individual cells by FACS equipment. With this methodology, the hidden heterogeneity of mitochondrial translation in cell populations can be addressed.

5.
Sci Rep ; 12(1): 21318, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494423

ABSTRACT

Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/pathology , Motor Neurons/physiology , Sensory Receptor Cells/pathology , Muscle Fibers, Skeletal/pathology , Cell Differentiation
6.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36150391

ABSTRACT

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Subject(s)
Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Decitabine , Genes, ras , Humans , Ligands , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
7.
Biofabrication ; 15(1)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36126639

ABSTRACT

Creating a vasculature in engineered human skeletal muscle tissues (ehSMTs) enables us to create thick tissues, increase cell survival in implantation, provide models of blood-organ barriers for drug testing, and enhance muscle differentiation through paracrine signaling. Here, contractile ehSMTs with a central perfusable vascular channel and microvascular networks growing from this central vasculature into the surrounding skeletal muscle tissue were newly demonstrated. Because coculturing muscle cells and endothelial cells requires incompatible media, we recapitulated thein vivoextracellular fluid compartments between blood plasma and interstitial fluid by creating anin vitroperfusable vasculature running through skeletal muscle tissue with a physiologic cell density. By using this model, we constructed large vascularized ehSMTs and showed the potential to be utilized for drug testing platforms. Also, we found that coculturing with two separate media from an early stage of muscle differentiation led to increased contractile force, thicker myotubes, and improved muscle differentiation.


Subject(s)
Endothelial Cells , Tissue Engineering , Humans , Endothelial Cells/physiology , Neovascularization, Physiologic , Microvessels , Muscle, Skeletal/physiology
8.
Cell Rep ; 40(12): 111366, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130522

ABSTRACT

Melanocytes are surrounded by diverse cells, including sensory neurons in our skin, but their interaction and functional importance have been poorly investigated. In this study, we find that melanocytes and nociceptive neurons contact more in human skin color patch tissue than control. Co-culture with human iPSC-derived sensory neurons significantly induces morphogenesis and pigmentation of human melanocytes. To reveal melanocyte-stimulating factors secreted from neurons, we perform proteomic analyses and identify RGMB in the sensory neuron-conditioned medium. RGMB protein induces morphogenesis and melanin production of melanocytes, demonstrating that RGMB is a melanocyte-stimulating factor released from sensory neurons. Transcriptome analysis suggests that the melanosome transport machinery can be controlled by RGMB, leading us to identify the vesicle production response of melanocytes upon RGMB treatment. This study discovers a role of sensory neurons in modulating multiple aspects of human melanocytes through secretion of a key factor: RGMB.


Subject(s)
Melanins , Proteomics , Culture Media, Conditioned/pharmacology , Humans , Melanins/metabolism , Melanocytes/metabolism , Sensory Receptor Cells/metabolism
9.
Neurochem Res ; 47(9): 2529-2544, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35943626

ABSTRACT

Over the years, techniques have been developed to culture and assemble neurons, which brought us closer to creating neuronal circuits that functionally and structurally mimic parts of the brain. Starting with primary culture of neurons, preparations of neuronal culture have advanced substantially. Development of stem cell research and brain organoids has opened a new path for generating three-dimensional human neural circuits. Along with the progress in biology, engineering technologies advanced and paved the way for construction of neural circuit structures. In this article, we overview research progress and discuss perspective of in vitro neural circuits and their ability and potential to acquire functions. Construction of in vitro neural circuits with complex higher-order functions would be achieved by converging development in diverse major disciplines including neuroscience, stem cell biology, tissue engineering, electrical engineering and computer science.


Subject(s)
Neurons , Neurosciences , Brain/physiology , Humans , Neurons/physiology , Stem Cells
10.
FASEB J ; 36(8): e22453, 2022 08.
Article in English | MEDLINE | ID: mdl-35838893

ABSTRACT

Constructing engineered human skeletal muscle tissues that resemble the function and microstructure of human skeletal muscles is key to utilizing them in a variety of applications such as drug development, disease modeling, regenerative medicine, and engineering biological machines. However, current in vitro skeletal muscle tissues are far inferior to native muscles in terms of contractile function and lack essential cues for muscle functions, particularly heterotypic cell-cell interactions between myoblasts, endothelial cells, and fibroblasts. Here, we develop an engineered muscle tissue with a coaxial three-layered tubular structure composed of an inner endothelial cell layer, an endomysium-like layer with fibroblasts in the middle, and an outer skeletal muscle cell layer, similar to the architecture of native skeletal muscles. Engineered skeletal muscle tissues with three spatially organized cell types produced thicker myotubes and lowered Young's modulus through extracellular matrix remodeling, resulting in 43% stronger contractile force. Furthermore, we demonstrated that fibroblasts localized in the endomysium layer induced angiogenic sprouting of endothelial cells into the muscle layer more effectively than fibroblasts homogeneously distributed in the muscle layer. This layered tri-culture system enables a structured spatial configuration of the three main cell types of skeletal muscle and promotes desired paracrine signaling, resulting in improved angiogenesis and increased contractile force. This research offers new insights to efficiently obtain new human skeletal muscle models, transplantable tissues, and actuators for biological machines.


Subject(s)
Endothelial Cells , Muscle Fibers, Skeletal , Fibroblasts , Humans , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Perfusion , Tissue Engineering/methods
11.
RNA ; 28(6): 895-904, 2022 06.
Article in English | MEDLINE | ID: mdl-35256452

ABSTRACT

Mitochondria possess their own genome that encodes components of oxidative phosphorylation (OXPHOS) complexes, and mitochondrial ribosomes within the organelle translate the mRNAs expressed from the mitochondrial genome. Given the differential OXPHOS activity observed in diverse cell types, cell growth conditions, and other circumstances, cellular heterogeneity in mitochondrial translation can be expected. Although individual protein products translated in mitochondria have been monitored, the lack of techniques that address the variation in overall mitochondrial protein synthesis in cell populations poses analytic challenges. Here, we adapted mitochondrial-specific fluorescent noncanonical amino acid tagging (FUNCAT) for use with fluorescence-activated cell sorting (FACS) and developed mito-FUNCAT-FACS. The click chemistry-compatible methionine analog L-homopropargylglycine (HPG) enabled the metabolic labeling of newly synthesized proteins. In the presence of cytosolic translation inhibitors, HPG was selectively incorporated into mitochondrial nascent proteins and conjugated to fluorophores via the click reaction (mito-FUNCAT). The application of in situ mito-FUNCAT to flow cytometry allowed us to separate changes in net mitochondrial translation activity from those of the organelle mass and detect variations in mitochondrial translation in cancer cells. Our approach provides a useful methodology for examining mitochondrial protein synthesis in individual cells.


Subject(s)
Amino Acids , Protein Biosynthesis , Amino Acids/chemistry , Flow Cytometry , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
12.
Nat Commun ; 12(1): 7102, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876589

ABSTRACT

Various stressors such as viral infection lead to the suppression of cap-dependent translation and the activation of the integrated stress response (ISR), since the stress-induced phosphorylated eukaryotic translation initiation factor 2 [eIF2(αP)] tightly binds to eIF2B to prevent it from exchanging guanine nucleotide molecules on its substrate, unphosphorylated eIF2. Sandfly fever Sicilian virus (SFSV) evades this cap-dependent translation suppression through the interaction between its nonstructural protein NSs and host eIF2B. However, its precise mechanism has remained unclear. Here, our cryo-electron microscopy (cryo-EM) analysis reveals that SFSV NSs binds to the α-subunit of eIF2B in a competitive manner with eIF2(αP). Together with SFSV NSs, eIF2B retains nucleotide exchange activity even in the presence of eIF2(αP), in line with the cryo-EM structures of the eIF2B•SFSV NSs•unphosphorylated eIF2 complex. A genome-wide ribosome profiling analysis clarified that SFSV NSs expressed in cultured human cells attenuates the ISR triggered by thapsigargin, an endoplasmic reticulum stress inducer. Furthermore, SFSV NSs introduced in rat hippocampal neurons and human induced-pluripotent stem (iPS) cell-derived motor neurons exhibits neuroprotective effects against the ISR-inducing stress. Since ISR inhibition is beneficial in various neurological disease models, SFSV NSs may be a promising therapeutic ISR inhibitor.


Subject(s)
Eukaryotic Initiation Factor-2B/chemistry , Eukaryotic Initiation Factor-2B/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Animal Diseases , Animals , Cell Line , Cryoelectron Microscopy , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2B/genetics , Female , Humans , Models, Molecular , Neurons , Phlebovirus , Phosphorylation , Protein Binding , Rats , Rats, Wistar , Ribosomes , Viral Proteins/genetics
13.
Front Immunol ; 11: 2090, 2020.
Article in English | MEDLINE | ID: mdl-33013881

ABSTRACT

Intratumoral recruitment of immune cells following innate immune activation is critical for anti-tumor immunity and involves cytosolic dsDNA sensing by the cGAS/STING pathway. We have previously shown that KRAS-LKB1 (KL) mutant lung cancer, which is resistant to PD-1 blockade, exhibits silencing of STING, impaired tumor cell production of immune chemoattractants, and T cell exclusion. Since the vasculature is also a critical gatekeeper of immune cell infiltration into tumors, we developed a novel microfluidic model to study KL tumor-vascular interactions. Notably, dsDNA priming of LKB1-reconstituted tumor cells activates the microvasculature, even when tumor cell STING is deleted. cGAS-driven extracellular export of 2'3' cGAMP by cancer cells activates STING signaling in endothelial cells and cooperates with type 1 interferon to increase vascular permeability and expression of E selectin, VCAM-1, and ICAM-1 and T cell adhesion to the endothelium. Thus, tumor cell cGAS-STING signaling not only produces T cell chemoattractants, but also primes tumor vasculature for immune cell escape.


Subject(s)
Endothelial Cells/metabolism , Lung Neoplasms , Neoplasm Proteins/metabolism , Neovascularization, Pathologic , Nucleotides, Cyclic/metabolism , Signal Transduction , Cell Line, Tumor , Coculture Techniques , Endothelial Cells/pathology , Humans , Lung Neoplasms/blood supply , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasm Proteins/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Nucleotides, Cyclic/genetics
14.
J Vis Exp ; (163)2020 09 24.
Article in English | MEDLINE | ID: mdl-33044443

ABSTRACT

A fascicle of axons is one of the major structural motifs observed in the nervous system. Disruption of axon fascicles could cause developmental and neurodegenerative diseases. Although numerous studies of axons have been conducted, our understanding of formation and dysfunction of axon fascicles is still limited due to the lack of robust three-dimensional in vitro models. Here, we describe a step-by-step protocol for the rapid generation of a motor nerve organoid (MNO) from human induced pluripotent stem (iPS) cells in a microfluidic-based tissue culture chip. First, fabrication of chips used for the method is described. From human iPS cells, a motor neuron spheroid (MNS) is formed. Next, the differentiated MNS is transferred into the chip. Thereafter, axons spontaneously grow out of the spheroid and assemble into a fascicle within a microchannel equipped in the chip, which generates an MNO tissue carrying a bundle of axons extended from the spheroid. For the downstream analysis, MNOs can be taken out of the chip to be fixed for morphological analyses or dissected for biochemical analyses, as well as calcium imaging and multi-electrode array recordings. MNOs generated with this protocol can facilitate drug testing and screening and can contribute to understanding of mechanisms underlying development and diseases of axon fascicles.


Subject(s)
Motor Neurons/physiology , Organoids/physiology , Animals , Calcium/metabolism , Cell Differentiation , Dimethylpolysiloxanes/chemistry , Electrodes , Epoxy Compounds/chemistry , Humans , Induced Pluripotent Stem Cells/cytology , Microfluidics , Polymers/chemistry , Tissue Culture Techniques
15.
PLoS Biol ; 18(3): e3000632, 2020 03.
Article in English | MEDLINE | ID: mdl-32163402

ABSTRACT

Proteins are typically denatured and aggregated by heating at near-boiling temperature. Exceptions to this principle include highly disordered and heat-resistant proteins found in extremophiles, which help these organisms tolerate extreme conditions such as drying, freezing, and high salinity. In contrast, the functions of heat-soluble proteins in non-extremophilic organisms including humans remain largely unexplored. Here, we report that heat-resistant obscure (Hero) proteins, which remain soluble after boiling at 95°C, are widespread in Drosophila and humans. Hero proteins are hydrophilic and highly charged, and function to stabilize various "client" proteins, protecting them from denaturation even under stress conditions such as heat shock, desiccation, and exposure to organic solvents. Hero proteins can also block several different types of pathological protein aggregations in cells and in Drosophila strains that model neurodegenerative diseases. Moreover, Hero proteins can extend life span of Drosophila. Our study reveals that organisms naturally use Hero proteins as molecular shields to stabilize protein functions, highlighting their biotechnological and therapeutic potential.


Subject(s)
Drosophila Proteins/metabolism , Animals , Animals, Genetically Modified , Argonaute Proteins/chemistry , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , DNA-Binding Proteins/metabolism , Desiccation , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Eye/pathology , HEK293 Cells , Hot Temperature , Humans , Hydrophobic and Hydrophilic Interactions , L-Lactate Dehydrogenase/chemistry , L-Lactate Dehydrogenase/metabolism , Longevity , Male , Motor Neurons/pathology , Motor Neurons/physiology , Protein Stability , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Solubility
16.
Adv Healthc Mater ; 9(7): e1901486, 2020 04.
Article in English | MEDLINE | ID: mdl-32125776

ABSTRACT

Polymer nanoparticles (NPs), due to their small size and surface functionalization potential have demonstrated effective drug transport across the blood-brain-barrier (BBB). Currently, the lack of in vitro BBB models that closely recapitulate complex human brain microenvironments contributes to high failure rates of neuropharmaceutical clinical trials. In this work, a previously established microfluidic 3D in vitro human BBB model, formed by the self-assembly of human-induced pluripotent stem cell-derived endothelial cells, primary brain pericytes, and astrocytes in triculture within a 3D fibrin hydrogel is exploited to quantify polymer NP permeability, as a function of size and surface chemistry. Microvasculature are perfused with commercially available 100-400 nm fluorescent polystyrene (PS) NPs, and newly synthesized 100 nm rhodamine-labeled polyurethane (PU) NPs. Confocal images are taken at different timepoints and computationally analyzed to quantify fluorescence intensity inside/outside the microvasculature, to determine NP spatial distribution and permeability in 3D. Results show similar permeability of PS and PU NPs, which increases after surface-functionalization with brain-associated ligand holo-transferrin. Compared to conventional transwell models, the method enables rapid analysis of NP permeability in a physiologically relevant human BBB set-up. Therefore, this work demonstrates a new methodology to preclinically assess NP ability to cross the human BBB.


Subject(s)
Blood-Brain Barrier , Endothelial Cells , Brain , Humans , Microvessels , Pericytes
17.
Nat Protoc ; 15(2): 421-449, 2020 02.
Article in English | MEDLINE | ID: mdl-31932771

ABSTRACT

This protocol describes the design, fabrication and use of a 3D physiological and pathophysiological motor unit model consisting of motor neurons coupled to skeletal muscles interacting via the neuromuscular junction (NMJ) within a microfluidic device. This model facilitates imaging and quantitative functional assessment. The 'NMJ chip' enables real-time, live imaging of axonal outgrowth, NMJ formation and muscle maturation, as well as synchronization of motor neuron activity and muscle contraction under optogenetic control for the study of normal physiological events. The proposed protocol takes ~2-3 months to be implemented. Pathological behaviors associated with various neuromuscular diseases, such as regression of motor neuron axons, motor neuron death, and muscle degradation and atrophy can also be recapitulated in this system. Disease models can be created by the use of patient-derived induced pluripotent stem cells to generate both the motor neurons and skeletal muscle cells used. This is demonstrated by the use of cells from a patient with sporadic amyotrophic lateral sclerosis but can be applied more generally to models of neuromuscular disease, such as spinal muscular atrophy, NMJ disorder and muscular dystrophy. Models such as this hold considerable potential for applications in precision medicine, drug screening and disease risk assessment.


Subject(s)
Drug Evaluation, Preclinical/instrumentation , Microchip Analytical Procedures/methods , Neuromuscular Diseases/drug therapy , Precision Medicine/instrumentation , Humans , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Neuromuscular Diseases/pathology , Neuromuscular Diseases/physiopathology , Neuromuscular Junction/drug effects , Neuromuscular Junction/pathology , Neurons/drug effects , Neurons/pathology , Risk Assessment
18.
J Control Release ; 313: 80-95, 2019 11 10.
Article in English | MEDLINE | ID: mdl-31622695

ABSTRACT

MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine.


Subject(s)
Biocompatible Materials/chemistry , Delayed-Action Preparations/chemistry , MicroRNAs/chemistry , Nanocapsules/chemistry , Animals , Humans , Lipids/chemistry , Metal Nanoparticles/chemistry , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy , Polymers/chemistry , Precision Medicine , Regeneration/genetics , Silicon Dioxide/chemistry , Transfection
19.
Sci Rep ; 9(1): 1802, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30755634

ABSTRACT

Diabetes is one of the most common metabolic disorders, and is characterized by the inability to secrete/sense insulin and abnormal blood glucose concentration. Many researchers have concentrated their efforts on improving islet transplantation, in particular by fabricating bioartificial pancreatic islets in vitro. One of the critical points for the success of this research direction is the improvement of culture conditions, such as oxygen supply, in the engineering of bioartificial pancreatic islets to ensure their viability and functionality after transplantation. In this work, we fabricated microwell spheroid culture devices made of oxygen-permeable polydimethylsiloxane (PDMS), with which hypoxia in the core of bioartificial islets was alleviated and glucose-stimulated insulin secretion was increased ~2.5-fold compared to a device with the same configuration but made of non-oxygen-permeable plastic. We also demonstrated that antioxidants, such as ascorbic acid-2-phosphate (AA2P), could neutralize islet damage caused by increased reactive oxygen species (ROS) in the cell culture environment. These results suggest that supply of oxygen together with removal of ROS may lead to a better approach to prepare highly viable and functional bioartificial pancreatic islets.


Subject(s)
Antioxidants/pharmacology , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Oxygen/pharmacology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Animals , Ascorbic Acid/analogs & derivatives , Ascorbic Acid/pharmacology , Cell Line , Dimethylpolysiloxanes/pharmacology , Insulin/metabolism , Mice , Organophosphorus Compounds/pharmacology , Reactive Oxygen Species/metabolism
20.
Regen Eng Transl Med ; 4(3): 120-132, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30417074

ABSTRACT

In this study, we modeled lymphangiogenesis and vascular angiogenesis in a microdevice using a tissue engineering approach. Lymphatic vessels (LV) and blood vessels (BV) were fabricated by sacrificial molding with seeding human lymphatic endothelial cells and human umbilical vein endothelial cells into molded microchannels (600 µm diameter). During subsequent perfusion culture, lymphangiogenesis and vascular angiogenesis were induced by addition of phorbol 12-myristate 13-acetate (PMA) and VEGF-C or VEGF-A characterized by podoplanin and Prox-1 expression. The lymphatic capillaries formed button-like junctions treated with dexamethasone. To test the potential for screening anti-angiogenic (vascular and lymphatic) factors, antagonists of VEGF were introduced. We found that an inhibitor of VEGF-R3 did not completely suppress lymphatic angiogenesis with BVs present, although lymphatic angiogenesis was selectively prevented by addition of a VEGF-R3 inhibitor without BVs. To probe the mechanism of action, we focus on matrix metalloproteinase (MMP) secretion by vascular endothelial cells and lymphatic endothelial cells under monoculture or co-culture conditions. We found that vascular angiogenesis facilitated lymphangiogenesis via remodeling of the local microenvironment by the increased secretion of MMP, mainly by endothelial cells. Applications of this model include a drug screening assay for corneal disease and models for tumorigenesis including lymphatic angiogenesis and vascular angiogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...