Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
2.
Leukemia ; 37(2): 339-347, 2023 02.
Article in English | MEDLINE | ID: mdl-36566271

ABSTRACT

Recent evidence suggests that the prognostic impact of gene mutations in patients with chronic lymphocytic leukemia (CLL) may differ depending on the immunoglobulin heavy variable (IGHV) gene somatic hypermutation (SHM) status. In this study, we assessed the impact of nine recurrently mutated genes (BIRC3, EGR2, MYD88, NFKBIE, NOTCH1, POT1, SF3B1, TP53, and XPO1) in pre-treatment samples from 4580 patients with CLL, using time-to-first-treatment (TTFT) as the primary end-point in relation to IGHV gene SHM status. Mutations were detected in 1588 (34.7%) patients at frequencies ranging from 2.3-9.8% with mutations in NOTCH1 being the most frequent. In both univariate and multivariate analyses, mutations in all genes except MYD88 were associated with a significantly shorter TTFT. In multivariate analysis of Binet stage A patients, performed separately for IGHV-mutated (M-CLL) and unmutated CLL (U-CLL), a different spectrum of gene alterations independently predicted short TTFT within the two subgroups. While SF3B1 and XPO1 mutations were independent prognostic variables in both U-CLL and M-CLL, TP53, BIRC3 and EGR2 aberrations were significant predictors only in U-CLL, and NOTCH1 and NFKBIE only in M-CLL. Our findings underscore the need for a compartmentalized approach to identify high-risk patients, particularly among M-CLL patients, with potential implications for stratified management.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Prognosis , Myeloid Differentiation Factor 88/genetics , Mutation , Phenotype
3.
Cancers (Basel) ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35954380

ABSTRACT

Chromothripsis (cth) has been associated with a dismal outcome and poor prognosis factors in patients with chronic lymphocytic leukemia (CLL). Despite being correlated with high genome instability, previous studies have not assessed the role of cth in the context of genomic complexity. Herein, we analyzed a cohort of 33 CLL patients with cth and compared them against a cohort of 129 non-cth cases with complex karyotypes. Nine cth cases were analyzed using optical genome mapping (OGM). Patterns detected by genomic microarrays were compared and the prognostic value of cth was analyzed. Cth was distributed throughout the genome, with chromosomes 3, 6 and 13 being those most frequently affected. OGM detected 88.1% of the previously known copy number alterations and several additional cth-related rearrangements (median: 9, range: 3-26). Two patterns were identified: one with rearrangements clustered in the region with cth (3/9) and the other involving both chromothriptic and non-chromothriptic chromosomes (6/9). Cases with cth showed a shorter time to first treatment (TTFT) than non-cth patients (median TTFT: 2 m vs. 15 m; p = 0.013). However, when stratifying patients based on TP53 status, cth did not affect TTFT. Only TP53 maintained its significance in the multivariate analysis for TTFT, including cth and genome complexity defined by genomic microarrays (HR: 1.60; p = 0.029). Our findings suggest that TP53 abnormalities, rather than cth itself, underlie the poor prognosis observed in this subset.

4.
Front Oncol ; 12: 897280, 2022.
Article in English | MEDLINE | ID: mdl-35903706

ABSTRACT

Patients with CLL with mutated IGHV genes (M-CLL) have better outcomes than patients with unmutated IGHVs (U-CLL). Since U-CLL usually express immunoglobulins (IGs) that are more autoreactive and more effectively transduce signals to leukemic B cells, B-cell receptor (BCR) signaling is likely at the heart of the worse outcomes of CLL cases without/few IGHV mutations. A corollary of this conclusion is that M-CLL follow less aggressive clinical courses because somatic IGHV mutations have altered BCR structures and no longer bind stimulatory (auto)antigens and so cannot deliver trophic signals to leukemic B cells. However, the latter assumption has not been confirmed in a large patient cohort. We tried to address the latter by measuring the relative numbers of replacement (R) mutations that lead to non-conservative amino acid changes (Rnc) to the combined numbers of conservative (Rc) and silent (S) amino acid R mutations that likely do not or cannot change amino acids, "(S+Rc) to Rnc IGHV mutation ratio". When comparing time-to-first-treatment (TTFT) of patients with (S+Rc)/Rnc ≤ 1 and >1, TTFTs were similar, even after matching groups for equal numbers of samples and identical numbers of mutations per sample. Thus, BCR structural change might not be the main reason for better outcomes for M-CLL. Since the total number of IGHV mutations associated better with longer TTFT, better clinical courses appear due to the biologic state of a B cell having undergone many stimulatory events leading to IGHV mutations. Analyses of larger patient cohorts will be needed to definitively answer this question.

5.
Hemasphere ; 6(4): e707, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35392482

ABSTRACT

Mounting evidence underscores the clinical value of cytogenetic analysis in chronic lymphocytic leukemia (CLL), particularly as it allows the identification of complex karyotype, that has recently emerged as a prognostic and potentially predictive biomarker. That said, explicit recommendations regarding the methodology and clinical interpretation of either chromosome banding analysis (CBA) or chromosome microarray analysis (CMA) are still lacking. We herein present the consensus of the Cytogenetic Steering Scientific Committee of ERIC, the European Research Initiative on CLL, regarding methodological issues as well as clinical interpretation of CBA/CMA and discuss their relevance in CLL. ERIC considers CBA standardized and feasible for CLL on the condition that standards are met, extending from the use of novel mitogens to the accurate interpretation of the findings. On the other hand, CMA, is also standardized, however, robust data on its clinical utility are still scarce. In conclusion, cytogenetic analysis is not yet mature enough to guide treatment choices in CLL. That notwithstanding, ERIC encourages the wide application of CBA, and potentially also CMA, in clinical trials in order to obtain robust evidence regarding the predictive value of specific cytogenetic profiles towards refining risk stratification and improving the management of patients with CLL.

6.
Cancers (Basel) ; 14(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35158965

ABSTRACT

Classical hairy cell leukaemia (HCLc), its variant form (HCLv), and splenic diffuse red pulp lymphoma (SDRPL) constitute a subset of relatively indolent B cell tumours, with low incidence rates of high-grade transformations, which primarily involve the spleen and bone marrow and are usually associated with circulating tumour cells characterised by villous or irregular cytoplasmic borders. The primary aim of this review is to summarise their cytogenetic, genomic, immunogenetic, and epigenetic features, with a particular focus on the clonal BRAFV600E mutation, present in most cases currently diagnosed with HCLc. We then reflect on their cell of origin and pathogenesis as well as present the clinical implications of improved biological understanding, extending from diagnosis to prognosis assessment and therapy response.

7.
Haematologica ; 107(3): 593-603, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33691382

ABSTRACT

Genome complexity has been associated with poor outcome in patients with chronic lymphocytic leukemia (CLL). Previous cooperative studies established five abnormalities as the cut-off that best predicts an adverse evolution by chromosome banding analysis (CBA) and genomic microarrays (GM). However, data comparing risk stratification by both methods are scarce. Herein, we assessed a cohort of 340 untreated CLL patients highly enriched in cases with complex karyotype (CK) (46.5%) with parallel CBA and GM studies. Abnormalities found by both techniques were compared. Prognostic stratification in three risk groups based on genomic complexity (0-2, 3- 4 and ≥5 abnormalities) was also analyzed. No significant differences in the percentage of patients in each group were detected, but only a moderate agreement was observed between methods when focusing on individual cases (κ=0.507; P<0.001). Discordant classification was obtained in 100 patients (29.4%), including 3% classified in opposite risk groups. Most discrepancies were technique-dependent and no greater correlation in the number of abnormalities was achieved when different filtering strategies were applied for GM. Nonetheless, both methods showed a similar concordance index for prediction of time to first treatment (TTFT) (CBA: 0.67 vs. GM: 0.65) and overall survival (CBA: 0.55 vs. GM: 0.57). High complexity maintained its significance in the multivariate analysis for TTFT including TP53 and IGHV status when defined by CBA (hazard ratio [HR] 3.23; P<0.001) and GM (HR 2.74; P<0.001). Our findings suggest that both methods are useful but not equivalent for risk stratification of CLL patients. Validation studies are needed to establish the prognostic value of genome complexity based on GM data in future prospective studies.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Chromosome Aberrations , Chromosome Banding , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Prognosis , Risk Assessment
8.
Nat Commun ; 12(1): 665, 2021 01 28.
Article in English | MEDLINE | ID: mdl-33510140

ABSTRACT

Prognostication in patients with chronic lymphocytic leukemia (CLL) is challenging due to heterogeneity in clinical course. We hypothesize that constitutional genetic variation affects disease progression and could aid prognostication. Pooling data from seven studies incorporating 842 cases identifies two genomic locations associated with time from diagnosis to treatment, including 10q26.13 (rs736456, hazard ratio (HR) = 1.78, 95% confidence interval (CI) = 1.47-2.15; P = 2.71 × 10-9) and 6p (rs3778076, HR = 1.99, 95% CI = 1.55-2.55; P = 5.08 × 10-8), which are particularly powerful prognostic markers in patients with early stage CLL otherwise characterized by low-risk features. Expression quantitative trait loci analysis identifies putative functional genes implicated in modulating B-cell receptor or innate immune responses, key pathways in CLL pathogenesis. In this work we identify rs736456 and rs3778076 as prognostic in CLL, demonstrating that disease progression is determined by constitutional genetic variation as well as known somatic drivers.


Subject(s)
Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Polymorphism, Single Nucleotide , Aged , Disease Progression , Female , Humans , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Multivariate Analysis , Prognosis , Quantitative Trait Loci/genetics
9.
Haematologica ; 106(1): 87-97, 2021 01 01.
Article in English | MEDLINE | ID: mdl-31974198

ABSTRACT

Complex karyotype (CK) identified by chromosome-banding analysis (CBA) has shown prognostic value in chronic lymphocytic leukemia (CLL). Genomic arrays offer high-resolution genome-wide detection of copy-number alterations (CNAs) and could therefore be well equipped to detect the presence of a CK. Current knowledge on genomic arrays in CLL is based on outcomes of single center studies, in which different cutoffs for CNA calling were used. To further determine the clinical utility of genomic arrays for CNA assessment in CLL diagnostics, we retrospectively analyzed 2293 arrays from 13 diagnostic laboratories according to established standards. CNAs were found outside regions captured by CLL FISH probes in 34% of patients, and several of them including gains of 8q, deletions of 9p and 18p (p<0.01) were linked to poor outcome after correction for multiple testing. Patients (n=972) could be divided in three distinct prognostic subgroups based on the number of CNAs. Only high genomic complexity (high-GC), defined as ≥5 CNAs emerged as an independent adverse prognosticator on multivariable analysis for time to first treatment (Hazard ratio: 2.15, 95% CI: 1.36-3.41; p=0.001) and overall survival (Hazard ratio: 2.54, 95% CI: 1.54-4.17; p<0.001; n=528). Lowering the size cutoff to 1 Mb in 647 patients did not significantly improve risk assessment. Genomic arrays detected more chromosomal abnormalities and performed at least as well in terms of risk stratification compared to simultaneous chromosome banding analysis as determined in 122 patients. Our findings highlight genomic array as an accurate tool for CLL risk stratification.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Chromosome Aberrations , Genome, Human , Genomics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Retrospective Studies
10.
Haematologica ; 106(3): 682-691, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32273480

ABSTRACT

Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2- 99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mutation , Reproducibility of Results
11.
Leukemia ; 34(7): 1760-1774, 2020 07.
Article in English | MEDLINE | ID: mdl-32015491

ABSTRACT

Despite advances in chronic lymphocytic leukaemia (CLL) treatment, globally chemotherapy remains a central treatment modality, with chemotherapy trials representing an invaluable resource to explore disease-related/genetic features contributing to long-term outcomes. In 499 LRF CLL4 cases, a trial with >12 years follow-up, we employed targeted resequencing of 22 genes, identifying 623 mutations. After background mutation rate correction, 11/22 genes were recurrently mutated at frequencies between 3.6% (NFKBIE) and 24% (SF3B1). Mutations beyond Sanger resolution (<12% VAF) were observed in all genes, with KRAS mutations principally composed of these low VAF variants. Firstly, employing orthogonal approaches to confirm <12% VAF TP53 mutations, we assessed the clinical impact of TP53 clonal architecture. Whilst ≥ 12% VAF TP53mut cases were associated with reduced PFS and OS, we could not demonstrate a difference between <12% VAF TP53 mutations and either wild type or ≥12% VAF TP53mut cases. Secondly, we identified biallelic BIRC3 lesions (mutation and deletion) as an independent marker of inferior PFS and OS. Finally, we observed that mutated MAPK-ERK genes were independent markers of poor OS in multivariate survival analysis. In conclusion, our study supports using targeted resequencing of expanded gene panels to elucidate the prognostic impact of gene mutations.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Biomarkers, Tumor/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , MAP Kinase Signaling System/genetics , Mutation , Tumor Suppressor Protein p53/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cohort Studies , Cyclophosphamide/administration & dosage , Extracellular Signal-Regulated MAP Kinases/genetics , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Prognosis , Survival Rate , Vidarabine/administration & dosage , Vidarabine/analogs & derivatives
12.
Clin Epigenetics ; 11(1): 177, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31791414

ABSTRACT

BACKGROUND: In order to gain insight into the contribution of DNA methylation to disease progression of chronic lymphocytic leukemia (CLL), using 450K Illumina arrays, we determined the DNA methylation profiles in paired pre-treatment/relapse samples from 34 CLL patients treated with chemoimmunotherapy, mostly (n = 31) with the fludarabine-cyclophosphamide-rituximab (FCR) regimen. RESULTS: The extent of identified changes in CLL cells versus memory B cells from healthy donors was termed "epigenetic burden" (EB) whereas the number of changes between the pre-treatment versus the relapse sample was termed "relapse changes" (RC). Significant (p < 0.05) associations were identified between (i) high EB and short time-to-first-treatment (TTFT); and, (ii) few RCs and short time-to-relapse. Both the EB and the RC clustered in specific genomic regions and chromatin states, including regulatory regions containing binding sites of transcription factors implicated in B cell and CLL biology. CONCLUSIONS: Overall, we show that DNA methylation in CLL follows different dynamics in response to chemoimmunotherapy. These epigenetic alterations were linked with specific clinical and biological features.


Subject(s)
Cyclophosphamide/therapeutic use , DNA Methylation/drug effects , High-Throughput Nucleotide Sequencing/methods , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Rituximab/therapeutic use , Vidarabine/analogs & derivatives , Adult , Aged , Cyclophosphamide/pharmacology , Disease Progression , Epigenesis, Genetic/drug effects , Female , Gene Regulatory Networks/drug effects , Humans , Immunotherapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Longitudinal Studies , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Rituximab/pharmacology , Treatment Outcome , Vidarabine/pharmacology , Vidarabine/therapeutic use
13.
Blood Adv ; 3(16): 2474-2481, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31434681

ABSTRACT

Chronic lymphocytic leukemia patients with mutated immunoglobulin heavy-chain genes (IGHV-M), particularly those lacking poor-risk genomic lesions, often respond well to chemoimmunotherapy (CIT). DNA methylation profiling can subdivide early-stage patients into naive B-cell-like CLL (n-CLL), memory B-cell-like CLL (m-CLL), and intermediate CLL (i-CLL), with differing times to first treatment and overall survival. However, whether DNA methylation can identify patients destined to respond favorably to CIT has not been ascertained. We classified treatment-naive patients (n = 605) from 3 UK chemo and CIT clinical trials into the 3 epigenetic subgroups, using pyrosequencing and microarray analysis, and performed expansive survival analysis. The n-CLL, i-CLL, and m-CLL signatures were found in 80% (n = 245/305), 17% (53/305), and 2% (7/305) of IGHV-unmutated (IGHV-U) cases, respectively, and in 9%, (19/216), 50% (108/216), and 41% (89/216) of IGHV-M cases, respectively. Multivariate Cox proportional analysis identified m-CLL as an independent prognostic factor for overall survival (hazard ratio [HR], 0.46; 95% confidence interval [CI], 0.24-0.87; P = .018) in CLL4, and for progression-free survival (HR, 0.25; 95% CI, 0.10-0.57; P = .002) in ARCTIC and ADMIRE patients. The analysis of epigenetic subgroups in patients entered into 3 first-line UK CLL trials identifies m-CLL as an independent marker of prolonged survival and may aid in the identification of patients destined to demonstrate prolonged survival after CIT.


Subject(s)
DNA Methylation , Gene Expression Regulation, Leukemic , Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Adult , Aged , Aged, 80 and over , Chromosome Aberrations , Computational Biology/methods , Epigenesis, Genetic , Epigenomics/methods , Female , Gene Expression Profiling , Humans , Immunoglobulin Heavy Chains/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Middle Aged , Mutation , Neoplasm Staging , Prognosis , Proportional Hazards Models
14.
Sci Rep ; 9(1): 10444, 2019 07 18.
Article in English | MEDLINE | ID: mdl-31320741

ABSTRACT

The aims of this systematic review are to refine the catalogue of somatic variants in splenic marginal zone lymphoma (SMZL) and to provide a well-annotated, manually curated database of high-confidence somatic mutations to facilitate variant interpretation for further biological studies and future clinical implementation. Two independent reviewers systematically searched PubMed and Ovid in January 2019 and included studies that sequenced SMZL cases with confirmed diagnosis. The database included fourteen studies, comprising 2817 variants in over 1000 genes from 475 cases. We confirmed the high prevalence of NOTCH2, KLF2 and TP53 mutations and analysis of targeted genes further implicated TNFAIP3, KMT2D, and TRAF3 as recurrent targets of somatic mutation based on their high incidence across studies. The major limitations we encountered were the low number of patients with whole-genome, unbiased analysis and the relative sensitivities of differing sequencing approaches. Overall, we showed that there is little concordance between whole exome sequencing studies of SMZL. We strongly support the continuing unbiased analysis of the SMZL genome for mutations in all protein-coding genes and provide a valuable database resource to facilitate this endeavour that will ultimately improve our understanding of SMZL pathobiology.


Subject(s)
Lymphoma/genetics , Mutation/genetics , Splenic Neoplasms/genetics , Exome/genetics , Humans , Exome Sequencing/methods
15.
Blood ; 133(12): 1269-1270, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30898773
16.
Blood ; 133(11): 1205-1216, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30602617

ABSTRACT

Recent evidence suggests that complex karyotype (CK) defined by the presence of ≥3 chromosomal aberrations (structural and/or numerical) identified by using chromosome-banding analysis (CBA) may be relevant for treatment decision-making in chronic lymphocytic leukemia (CLL). However, many challenges toward the routine clinical application of CBA remain. In a retrospective study of 5290 patients with available CBA data, we explored both clinicobiological associations and the clinical impact of CK in CLL. We found that patients with ≥5 abnormalities, defined as high-CK, exhibit uniformly dismal clinical outcomes, independently of clinical stage, TP53 aberrations (deletion of chromosome 17p and/or TP53 mutations [TP53abs]), and the expression of somatically hypermutated (M-CLL) or unmutated immunoglobulin heavy variable genes. Thus, they contrasted with CK cases with 3 or 4 aberrations (low-CK and intermediate-CK, respectively) who followed aggressive disease courses only in the presence of TP53abs. At the other end of the spectrum, patients with CK and +12,+19 displayed an exceptionally indolent profile. Building upon CK, TP53abs, and immunoglobulin heavy variable gene somatic hypermutation status, we propose a novel hierarchical model in which patients with high-CK exhibit the worst prognosis, whereas those with mutated CLL lacking CK or TP53abs, as well as CK with +12,+19, show the longest overall survival. Thus, CK should not be axiomatically considered unfavorable in CLL, representing a heterogeneous group with variable clinical behavior. High-CK with ≥5 chromosomal aberrations emerges as prognostically adverse, independent of other biomarkers. Prospective clinical validation is warranted before ultimately incorporating high-CK in risk stratification of CLL.


Subject(s)
Biomarkers, Tumor/genetics , Chromosome Aberrations , Cytogenetics/methods , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Mutation , Aged , Female , Follow-Up Studies , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Prognosis , Retrospective Studies , Somatic Hypermutation, Immunoglobulin/genetics , Survival Rate , Tumor Suppressor Protein p53/genetics
18.
J Pathol ; 247(4): 416-421, 2019 04.
Article in English | MEDLINE | ID: mdl-30484876

ABSTRACT

The B cell receptor immunoglobulin (Ig) gene repertoires of marginal zone (MZ) lymphoproliferations were analyzed in order to obtain insight into their ontogenetic relationships. Our cohort included cases with MZ lymphomas (n = 488), i.e. splenic (SMZL), nodal (NMZL) and extranodal (ENMZL), as well as provisional entities (n = 76), according to the WHO classification. The most striking Ig gene repertoire skewing was observed in SMZL. However, restrictions were also identified in all other MZ lymphomas studied, particularly ENMZL, with significantly different Ig gene distributions depending on the primary site of involvement. Cross-entity comparisons of the MZ Ig sequence dataset with a large dataset of Ig sequences (MZ-related or not; n = 65 837) revealed four major clusters of cases sharing homologous ('public') heavy variable complementarity-determining region 3. These clusters included rearrangements from SMZL, ENMZL (gastric, salivary gland, ocular adnexa), chronic lymphocytic leukemia, but also rheumatoid factors and non-malignant splenic MZ cells. In conclusion, different MZ lymphomas display biased immunogenetic signatures indicating distinct antigen exposure histories. The existence of rare public stereotypes raises the intriguing possibility that common, pathogen-triggered, immune-mediated mechanisms may result in diverse B lymphoproliferations due to targeting versatile progenitor B cells and/or operating in particular microenvironments. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Genes, Immunoglobulin/genetics , Lymphoma, B-Cell, Marginal Zone/genetics , Complementarity Determining Regions/genetics , Gene Rearrangement, B-Lymphocyte/genetics , Genes, Immunoglobulin Heavy Chain/genetics , Humans , Immunoglobulin Variable Region/genetics , Mutation/genetics , Receptors, Antigen, B-Cell/genetics , Tumor Microenvironment
19.
Int J Cancer ; 144(11): 2695-2706, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30447004

ABSTRACT

Chronic lymphocytic leukemia (CLL) stereotyped subsets #6 and #8 include cases expressing unmutated B cell receptor immunoglobulin (BcR IG) (U-CLL). Subset #6 (IGHV1-69/IGKV3-20) is less aggressive compared to subset #8 (IGHV4-39/IGKV1(D)-39) which has the highest risk for Richter's transformation among all CLL. The underlying reasons for this divergent clinical behavior are not fully elucidated. To gain insight into this issue, here we focused on epigenomic signatures and their links with gene expression, particularly investigating genome-wide DNA methylation profiles in subsets #6 and #8 as well as other U-CLL cases not expressing stereotyped BcR IG. We found that subset #8 showed a distinctive DNA methylation profile compared to all other U-CLL cases, including subset #6. Integrated analysis of DNA methylation and gene expression revealed significant correlation for several genes, particularly highlighting a relevant role for the TP63 gene which was hypomethylated and overexpressed in subset #8. This observation was validated by quantitative PCR, which also revealed TP63 mRNA overexpression in additional nonsubset U-CLL cases. BcR stimulation had distinct effects on p63 protein expression, particularly leading to induction in subset #8, accompanied by increased CLL cell survival. This pro-survival effect was also supported by siRNA-mediated downregulation of p63 expression resulting in increased apoptosis. In conclusion, we report that DNA methylation profiles may vary even among CLL patients with similar somatic hypermutation status, supporting a compartmentalized approach to dissecting CLL biology. Furthermore, we highlight p63 as a novel prosurvival factor in CLL, thus identifying another piece of the complex puzzle of clinical aggressiveness.


Subject(s)
DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Apoptosis/genetics , Epigenomics/methods , Female , Gene Expression Profiling/methods , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Primary Cell Culture , Promoter Regions, Genetic/genetics , RNA, Small Interfering/metabolism , Sequence Analysis, RNA , Transcription Factors/metabolism , Tumor Cells, Cultured , Tumor Suppressor Proteins/metabolism , Up-Regulation
20.
Haematologica ; 104(2): 360-369, 2019 02.
Article in English | MEDLINE | ID: mdl-30262567

ABSTRACT

Chronic lymphocytic leukemia (CLL) patients with differential somatic hypermutation status of the immunoglobulin heavy variable genes, namely mutated or unmutated, display fundamental clinico-biological differences. Considering this, we assessed prognosis separately within mutated (M-CLL) and unmutated (U-CLL) CLL in 3015 patients, hypothesizing that the relative significance of relevant indicators may differ between these two categories. Within Binet A M-CLL patients, besides TP53 abnormalities, trisomy 12 and stereotyped subset #2 membership were equivalently associated with the shortest time-to-first-treatment and a treatment probability at five and ten years after diagnosis of 40% and 55%, respectively; the remaining cases exhibited 5-year and 10-year treatment probability of 12% and 25%, respectively. Within Binet A U-CLL patients, besides TP53 abnormalities, del(11q) and/or SF3B1 mutations were associated with the shortest time-to-first-treatment (5- and 10-year treatment probability: 78% and 98%, respectively); in the remaining cases, males had a significantly worse prognosis than females. In conclusion, the relative weight of indicators that can accurately risk stratify early-stage CLL patients differs depending on the somatic hypermutation status of the immunoglobulin heavy variable genes of each patient. This finding highlights the fact that compartmentalized approaches based on immunogenetic features are necessary to refine and tailor prognostication in CLL.


Subject(s)
Biomarkers, Tumor , Disease Susceptibility , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Aged , Aged, 80 and over , Chromosome Aberrations , Female , Humans , Immunogenetics , Kaplan-Meier Estimate , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Male , Mutation , Neoplasm Staging , Prognosis , Time-to-Treatment
SELECTION OF CITATIONS
SEARCH DETAIL
...