Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
2.
Pharm Res ; 41(2): 223-234, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158503

ABSTRACT

PURPOSE: Accurate methods to determine dermal pharmacokinetics are important to increase the rate of clinical success in topical drug development. We investigated in an in vivo pig model whether the unbound drug concentration in the interstitial fluid as determined by dermal open flow microperfusion (dOFM) is a more reliable measure of dermal exposure compared to dermal biopsies for seven prescription or investigational drugs. In addition, we verified standard dOFM measurement using a recirculation approach and compared dosing frequencies (QD versus BID) and dose strengths (high versus low drug concentrations). METHODS: Domestic pigs were topically administered seven different drugs twice daily in two studies. On day 7, drug exposures in the dermis were assessed in two ways: (1) dOFM provided the total and unbound drug concentrations in dermal interstitial fluid, and (2) clean punch biopsies after heat separation provided the total concentrations in the upper and lower dermis. RESULTS: dOFM showed sufficient intra-study precision to distinguish interstitial fluid concentrations between different drugs, dose frequencies and dose strengths, and had good reproducibility between studies. Biopsy concentrations showed much higher and more variable values. Standard dOFM measurements were consistent with values obtained with the recirculation approach. CONCLUSIONS: dOFM pig model is a robust and reproducible method to directly determine topical drug concentration in dermal interstitial fluid. Dermal biopsies were a less reliable measure of dermal exposure due to possible contributions from drug bound to tissue and drug associated with skin appendages.


Subject(s)
Skin , Swine , Animals , Administration, Cutaneous , Reproducibility of Results , Skin/metabolism
3.
Mol Pharm ; 20(11): 5616-5630, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37812508

ABSTRACT

Accurate prediction of human pharmacokinetics (PK) remains one of the key objectives of drug metabolism and PK (DMPK) scientists in drug discovery projects. This is typically performed by using in vitro-in vivo extrapolation (IVIVE) based on mechanistic PK models. In recent years, machine learning (ML), with its ability to harness patterns from previous outcomes to predict future events, has gained increased popularity in application to absorption, distribution, metabolism, and excretion (ADME) sciences. This study compares the performance of various ML and mechanistic models for the prediction of human IV clearance for a large (645) set of diverse compounds with literature human IV PK data, as well as measured relevant in vitro end points. ML models were built using multiple approaches for the descriptors: (1) calculated physical properties and structural descriptors based on chemical structure alone (classical QSAR/QSPR); (2) in vitro measured inputs only with no structure-based descriptors (ML IVIVE); and (3) in silico ML IVIVE using in silico model predictions for the in vitro inputs. For the mechanistic models, well-stirred and parallel-tube liver models were considered with and without the use of empirical scaling factors and with and without renal clearance. The best ML model for the prediction of in vivo human intrinsic clearance (CLint) was an in vitro ML IVIVE model using only six in vitro inputs with an average absolute fold error (AAFE) of 2.5. The best mechanistic model used the parallel-tube liver model, with empirical scaling factors resulting in an AAFE of 2.8. The corresponding mechanistic model with full in silico inputs achieved an AAFE of 3.3. These relative performances of the models were confirmed with the prediction of 16 Pfizer drug candidates that were not part of the original data set. Results show that ML IVIVE models are comparable to or superior to their best mechanistic counterparts. We also show that ML IVIVE models can be used to derive insights into factors for the improvement of mechanistic PK prediction.


Subject(s)
Body Fluids , Humans , Computer Simulation , Drug Discovery , Kinetics , Machine Learning , Models, Biological , Metabolic Clearance Rate
4.
J Pharm Sci ; 107(8): 2225-2235, 2018 08.
Article in English | MEDLINE | ID: mdl-29608887

ABSTRACT

Four P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) substrates with human cerebrospinal fluid (CSF) concentrations and preclinical neuropharmacokinetics were used to assess in vitro-in vivo extrapolation of brain penetration in preclinical species and the ability to predict human brain penetration. Unbound brain (Cb,u), unbound plasma (Cp,u), and CSF compound concentrations (CCSF) were measured in rats and nonhuman primates (NHPs), and the unbound partition coefficients (Cb,u/Cp,u and CCSF/Cp,u) were used to assess brain penetration. The results indicated that for P-gp and BCRP dual substrates, brain penetration was severally impaired in all species. In comparison, for P-gp substrates that are weak or non-BCRP substrates, improved brain penetration was observed in NHPs and humans than in rats. Overall, NHP appears to be more predictive of human brain penetration for P-gp substrates with weak or no interaction with BCRP than rat. Although CCSF does not quantitatively correspond to Cb,u for efflux transporter substrates, it is mostly within 3-fold higher of Cb,u in rat and NHP, suggesting that CCSF can be used as a surrogate for Cb,u. Taken together, a holistic approach including both in vitro transporter and in vivo neuropharmacokinetics data enables a better estimation of human brain penetration of P-gp/BCRP substrates.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Brain/metabolism , Models, Biological , Neoplasm Proteins/metabolism , Pharmacokinetics , Animals , Azabicyclo Compounds/pharmacokinetics , Biological Transport , Blood-Brain Barrier/metabolism , Dogs , Drug Discovery , Humans , Imatinib Mesylate/pharmacokinetics , Imidazoles/pharmacokinetics , Madin Darby Canine Kidney Cells , Male , Models, Animal , Protein Kinase Inhibitors/pharmacokinetics , Rats, Sprague-Dawley
5.
Bioanalysis ; 9(22): 1827-1837, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29120222

ABSTRACT

Over the last decade, there has been broad incorporation of translational biomarkers into the early drug development process to predict safety concerns, measure target engagement and monitor disease progression. One goal of translational biomarkers is to create a cycle whereby preclinical readouts influence candidate selection and subsequent clinical data are fed back into research to facilitate better decision making. Successes have been limited and not as broad in scope as desired. Collaborations between industry and regulators have increased the number of qualified biomarkers; but the process is lengthy and expensive. A high level overview of translational biomarkers as well as a discussion of some of the successes and failures encountered in development is discussed here.


Subject(s)
Biomarkers/analysis , Drug Discovery , Animals , Benzhydryl Compounds/analysis , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucosides/analysis , Glucosides/metabolism , Glucosides/therapeutic use , Guidelines as Topic , Humans , Leukemia, Myeloid/diagnosis , Retinoic Acid Receptor alpha/metabolism
6.
J Pharmacol Exp Ther ; 358(2): 164-72, 2016 08.
Article in English | MEDLINE | ID: mdl-27217590

ABSTRACT

Oxytocin (OT) modulates the expression of social and emotional behaviors and consequently has been proposed as a pharmacologic treatment of psychiatric diseases, including autism spectrum disorders and schizophrenia; however, endogenous OT has a short half-life in plasma and poor permeability across the blood-brain barrier. Recent efforts have focused on the development of novel drug delivery methods to enhance brain penetration, but few efforts have aimed at improving its half-life. To explore the behavioral efficacy of an OT analog with enhanced plasma stability, we developed PF-06655075 (PF1), a novel non-brain-penetrant OT receptor agonist with increased selectivity for the OT receptor and significantly increased pharmacokinetic stability. PF-06478939 was generated with only increased stability to disambiguate changes to selectivity versus stability. The efficacy of these compounds in evoking behavioral effects was tested in a conditioned fear paradigm. Both central and peripheral administration of PF1 inhibited freezing in response to a conditioned fear stimulus. Peripheral administration of PF1 resulted in a sustained level of plasma concentrations for greater than 20 hours but no detectable accumulation in brain tissue, suggesting that plasma or cerebrospinal fluid exposure was sufficient to evoke behavioral effects. Behavioral efficacy of peripherally administered OT receptor agonists on conditioned fear response opens the door to potential peripheral mechanisms in other behavioral paradigms, whether they are mediated by direct peripheral activation or feed-forward responses. Compound PF1 is freely available as a tool compound to further explore the role of peripheral OT in behavioral response.


Subject(s)
Conditioning, Psychological/drug effects , Drug Discovery , Fear/psychology , Immobility Response, Tonic/drug effects , Oxytocin/administration & dosage , Oxytocin/pharmacology , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/pharmacology , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacology , Receptors, Oxytocin/agonists , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Administration Routes , Immobility Response, Tonic/physiology , Male , Mice , Oxytocin/chemistry , Oxytocin/pharmacokinetics , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Rats
7.
J Med Chem ; 58(10): 4291-308, 2015 May 28.
Article in English | MEDLINE | ID: mdl-25905800

ABSTRACT

A unique tetrahydrofuran ether class of highly potent α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators has been identified using rational and structure-based drug design. An acyclic lead compound, containing an ether-linked isopropylsulfonamide and biphenyl group, was pharmacologically augmented by converting it to a conformationally constrained tetrahydrofuran to improve key interactions with the human GluA2 ligand-binding domain. Subsequent replacement of the distal phenyl motif with 2-cyanothiophene to enhance its potency, selectivity, and metabolic stability afforded N-{(3S,4S)-4-[4-(5-cyano-2-thienyl)phenoxy]tetrahydrofuran-3-yl}propane-2-sulfonamide (PF-04958242, 3), whose preclinical characterization suggests an adequate therapeutic index, aided by low projected human oral pharmacokinetic variability, for clinical studies exploring its ability to attenuate cognitive deficits in patients with schizophrenia.


Subject(s)
Drug Evaluation, Preclinical/methods , Receptors, AMPA/metabolism , Sulfonamides/pharmacology , Thiophenes/pharmacology , Administration, Oral , Adolescent , Adult , Aged , Animals , Binding Sites , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Drug Discovery , Drug Stability , Female , Humans , Male , Memory, Short-Term/drug effects , Mice, Inbred C57BL , Middle Aged , Protein Conformation , Rats, Sprague-Dawley , Schizophrenia/drug therapy , Structure-Activity Relationship , Sulfonamides/chemistry , Thiophenes/chemistry , Young Adult
8.
Neuropharmacology ; 86: 174-80, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25063581

ABSTRACT

Ketamine is used preclinically and clinically to study schizophrenia and depression. Accordingly, it is imperative to understand the temporal relationship between the central concentrations and N-methyl-d-aspartate receptor (NMDAR) interactions of both ketamine and norketamine, its primary active metabolite, across species to assess the translatability of animal models to humans and the back-translation of clinical observations to the preclinical realm. However, such an interspecies normalization of ketamine and norketamine exposures at different clinical and preclinical doses (and their different routes and regimens) is lacking. This work defines the NMDAR occupancy (RO) time course following single doses of ketamine in rats, nonhuman primates (nhp) and humans to allow direct interspecies comparisons of specific ketamine-mediated pharmacodynamics via RO normalization. Total plasma concentration (Cp)-time profiles of ketamine and norketamine were generated from rats and nhp following a single, memory-impairing dose of ketamine; neuropharmacokinetics were determined in rats. [(3)H]MK-801-displacement studies in rats determined estimated mean (95% confidence interval) unbound plasma concentrations (Cp,u) for ketamine and norketamine producing 50% RO (IC50) of 1420 (990, 2140) nM and 9110 (5870, 13700) nM, respectively. Together, these datasets transformed Cp,u-time data to predicted RO (ROpred)-time profiles for rats, nhp and humans at behaviorally relevant ketamine doses. Subsequently, this approach helped determine an infusion paradigm in rats producing a ROpred-time profile mirroring that for a clinically antidepressant infusion. The described indication-independent methodology allows normalization to RO at any time following any ketamine dose (regardless of route or regimen) in any species by simply quantifying the Cp of ketamine and norketamine. Matching temporal RO relationships in animals and humans should allow direct comparisons of specific ketamine-dependent NMDAR-based pharmacodynamics.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Ketamine/pharmacology , Animals , Depression/drug therapy , Depression/physiopathology , Dizocilpine Maleate/pharmacokinetics , Excitatory Amino Acid Antagonists/pharmacokinetics , Ketamine/analogs & derivatives , Ketamine/pharmacokinetics , Macaca fascicularis , Male , Memory/drug effects , Memory/physiology , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Species Specificity , Tritium
9.
J Pharm Sci ; 103(5): 1557-62, 2014 May.
Article in English | MEDLINE | ID: mdl-24633923

ABSTRACT

In rats, oxycodone, diphenhydramine, and [4-chloro-5-fluoro-2-(3-methoxy-2-methyl-phenoxy)-benzyl]-methylamine (CE-157119) undergo net active influx at the blood-brain barrier (BBB) based on significantly greater interstitial fluid compound concentrations (CISF ) than unbound plasma compound concentrations (Cp,u ). Oxycodone and diphenhydramine have CISF :Cp,u of 3.0 and 5.5, respectively, while CE-157119 has an unbound brain compound concentration (Cb,u ):Cp,u of 3.90; Cb,u is a high-confidence CISF surrogate. However, only CE-157119 has published dog and nonhuman primate (nhp) neuropharmacokinetics, which show similar Cb,u :Cp,u (4.61 and 2.04, respectively) as rats. Thus, diphenhydramine underwent identical interspecies neuropharmacokinetics studies to determine if its net active BBB influx in rats replicated in dogs and/or nhp. The single-dose-derived rat Cb,u :Cp,u (3.90) was consistent with prior steady-state-derived CISF :Cp,u and similar to those in dogs (4.88) and nhp (4.51-5.00). All large animal interneurocompartmental ratios were ≤1.8-fold different than their rat values, implying that diphenhydramine has constant and substantial Cb,u -favoring disequilibria in these mammals. Accordingly, the applied Cb,u -forecasting methodology accurately predicted [estimated mean (95% confidence interval) of 0.84 (0.68, 1.05)] Cb,u from each measured Cp,u in large animals. The collective datasets suggest these Cb,u -preferring asymmetries are mediated by a species-independent BBB active uptake system whose identification, full characterization, and structure-activity relationships should be prioritized for potential exploitation.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Diphenhydramine/pharmacokinetics , Animals , Biological Transport/physiology , Dogs , Extracellular Fluid/metabolism , Female , Macaca fascicularis , Male , Microdialysis/methods , Oxycodone/pharmacokinetics , Rats , Rats, Sprague-Dawley
10.
Cutan Ocul Toxicol ; 33(3): 206-11, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24147951

ABSTRACT

CONTEXT: Selective inhibitors of glycine transporter type 1 (GlyT1) increase synaptic glycine concentrations and are being developed to treat cognitive and negative symptoms of schizophrenia. However, increases in systemic glycine levels have been associated with visual disturbances and electroretinogram (ERG) alternations. OBJECTIVE: To determine whether the selective GlyT1 inhibitor PF-03463275 causes changes in ERG responses in albino rats. MATERIALS AND METHODS: Male Sprague-Dawley rats were administered PF-03463275 subcutaneously at 1, 3 and 10 mg/kg 1 h prior to ERG acquisition. Scotopic and photopic luminance responses, photopic adaptometry and flicker responses were measured. Plasma and vitreous samples were obtained at necropsy for determination of PF-03463275 concentrations. RESULTS: A dose-dependent reduction (up to ∼70%) in the amplitude of the scotopic ERG oscillatory potentials (OPs) was observed following PF-03463275 administration. The amplitude of the OPs was also negatively correlated to the concentration of PF-03463275 in the vitreous humor (r = -0.64, p < 0.0001). With the exception of a small increase in scotopic ERG a-wave amplitude and latency no effects were observed on other ERG parameters tested. CONCLUSIONS: We conclude that inhibition of the GlyT1 transporter in the retina causes ERG changes which may underlie recent reports of visual disturbance with GlyT1 inhibitors in clinical trials.


Subject(s)
Azabicyclo Compounds/pharmacology , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Imidazoles/pharmacology , Retina/drug effects , Animals , Azabicyclo Compounds/blood , Azabicyclo Compounds/pharmacokinetics , Electroretinography/drug effects , Imidazoles/blood , Imidazoles/pharmacokinetics , Male , Photic Stimulation , Rats, Sprague-Dawley , Retina/physiology , Vitreous Body/metabolism
11.
Bioanalysis ; 5(21): 2607-12, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24180502

ABSTRACT

Due to macroeconomic factors, the pharmaceutical industry has progressively outsourced larger amounts of its internal research efforts. One such example is the purchase of large volumes of control nonhuman primate (nhp) plasma from external vendors. During the bioanalysis of plasma samples collected during a Cynomolgus monkey PK study with racemic (±) ketamine, it was discovered that the vendor control nhp plasma used for standard curve samples contained ketamine (32 µM). This ketamine concentration correlated to an anesthetic dose of ketamine (10-15 mg/kg, IM), which was not cited in the vendor's plasma harvesting protocol. This study evaluated the effect of ketamine in control nhp plasma on the in vitro-derived unbound plasma fraction of small molecules, which would cause erroneous nhp efficacy and safety values.


Subject(s)
Blood Proteins/metabolism , Ketamine/blood , Analgesics/blood , Animals , Chromatography, Liquid/methods , Macaca fascicularis , Male , Protein Binding , Tandem Mass Spectrometry/methods
12.
J Pharmacol Exp Ther ; 347(1): 212-24, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23899905

ABSTRACT

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulation (i.e., "potentiation") has been proposed to overcome cognitive impairments in schizophrenia, but AMPAR overstimulation can be excitotoxic. Thus, it is critical to define carefully a potentiator's mechanism-based therapeutic index (TI) and to determine confidently its translatability from rodents to higher-order species. Accordingly, the novel AMPAR potentiator N-{(3R,4S)-3-[4-(5-cyano-2-thienyl)phenyl]tetrahydro-2H-pyran-4-yl}propane-2-sulfonamide (PF-4778574) was characterized in a series of in vitro assays and single-dose animal studies evaluating AMPAR-mediated activities related to cognition and safety to afford an unbound brain compound concentration (Cb,u)-normalized interspecies exposure-response relationship. Because it is unknown which AMPAR subtype(s) may be selectively potentiated for an optimal TI, PF-4778574 binding affinity and functional potency were determined in rodent tissues expected to express a native mixture of AMPAR subunits and their associated proteins to afford composite pharmacological values. Functional activity was also quantified in recombinant cell lines stably expressing human GluA2 flip or flop homotetramers. Procognitive effects of PF-4778574 were evaluated in both rat electrophysiological and nonhuman primate (nhp) behavioral models of pharmacologically induced N-methyl-d-aspartate receptor hypofunction. Safety studies assessed cerebellum-based AMPAR activation (mouse) and motor coordination disruptions (mouse, dog, and nhp), as well as convulsion (mouse, rat, and dog). The resulting empirically derived exposure-response continuum for PF-4778574 defines a single-dose-based TI of 8- to 16-fold for self-limiting tremor, a readily monitorable clinical adverse event. Importantly, the Cb,u mediating each physiological effect were highly consistent across species, with efficacy and convulsion occurring at just fractions of the in vitro-derived pharmacological values.


Subject(s)
Excitatory Amino Acid Agonists/pharmacology , Receptors, AMPA/agonists , Receptors, AMPA/physiology , Thiophenes/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Cells, Cultured , Dogs , Excitatory Amino Acid Agonists/therapeutic use , Female , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Psychomotor Performance/drug effects , Psychomotor Performance/physiology , Random Allocation , Rats , Rats, Sprague-Dawley , Seizures/physiopathology , Seizures/prevention & control , Thiophenes/therapeutic use , Treatment Outcome
13.
Drug Metab Dispos ; 40(11): 2162-73, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899853

ABSTRACT

Previous publications suggest that interstitial fluid compound concentrations (C(ISF)) best determine quantitative neurotherapeutic pharmacology relationships, although confirming large animal C(ISF) remains elusive. Therefore, this work primarily evaluated using respective acute dose, rat-derived unbound brain compound concentration-to-unbound plasma compound concentration ratios (C(b,u)/C(p,u)) to project accurately dog and nonhuman primate (nhp) C(b,u), a C(ISF) surrogate, from measured C(p,u) for the highly permeable non-P-glycoprotein substrates N-{(3R,4S)-3-[4-(5-cyano-2-thienyl)phenyl]tetrahydro-2H-pyran-4-yl}propane-2-sulfonamide (PF-4778574) and [4-chloro-5-fluoro-2-(3-methoxy-2-methyl-phenoxy)-benzyl]-methylamine (CE-157119) and the P-glycoprotein substrates risperidone and 9-hydroxyrisperidone. First, in rats, it was determined for eight of nine commercial compounds that their single-dose-derived C(b,u)/C(p,u) were ≤2.5-fold different from their steady-state values; for all nine drugs, their C(b,u)/C(p,u) were ≤2.5-fold different from their steady-state C(ISF)/C(p,u) (Drug Metab Dispos 37:787-793, 2009). Subsequently, PF-4778574, CE-157119 and risperidone underwent rat, dog, and nhp neuropharmacokinetics studies. In large animals at each measured C(p,u), the methodology adequately predicted [estimated mean (95% confidence interval) of 1.02 (0.80, 1.29)] the observed C(b,u) for PF-4778574 and CE-157119 but underpredicted [0.17 (0.12, 0.22)] C(b,u) for risperidone and 9-hydroxyrisperidone. The data imply that forecasting higher species C(b,u) from a measured C(p,u) and rat acute dose-determined C(b,u):C(p,u) is of high confidence for nonefflux transporter substrates that show net passive diffusion (PF-4778574) or net active influx (CE-157119) at the blood-brain barrier in rats. However, this methodology appears ineffective for correctly predicting large animal C(b,u) for P-glycoprotein substrates (risperidone and 9-hydroxyrisperidone) because of their apparently much greater C(p,u)-favoring C(b,u):C(p,u) asymmetry in rats versus dogs or nhp. Instead, for such P-glycoprotein substrates, large animal-specific cerebrospinal fluid compound concentrations (C(CSF)) seemingly best represent C(b,u).


Subject(s)
Brain/metabolism , Isoxazoles/pharmacokinetics , Pyrimidines/pharmacokinetics , Risperidone/pharmacokinetics , Thiophenes/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Biological Transport , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/drug effects , Brain Chemistry , Dogs , Male , Paliperidone Palmitate , Primates , Rats , Rats, Sprague-Dawley
14.
J Pharmacol Exp Ther ; 342(2): 366-75, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22562771

ABSTRACT

Reducing the generation of amyloid-ß (Aß) in the brain via inhibition of ß-secretase or inhibition/modulation of γ-secretase has been pursued as a potential disease-modifying treatment for Alzheimer's disease. For the discovery and development of ß-secretase inhibitors (BACEi), γ-secretase inhibitors (GSI), and γ-secretase modulators (GSM), Aß in cerebrospinal fluid (CSF) has been presumed to be an effect biomarker for Aß lowering in the brain. However, this presumption is challenged by the lack of quantitative understanding of the relationship between brain and CSF Aß lowering. In this study, we strived to elucidate how the intrinsic pharmacokinetic (PK)/pharmacodynamic (PD) relationship for CSF Aß lowering is related to that for brain Aß through quantitative modeling of preclinical data for numerous BACEi, GSI, and GSM across multiple species. Our results indicate that the intrinsic PK/PD relationship in CSF is predictive of that in brain, at least in the postulated pharmacologically relevant range, with excellent consistency across mechanisms and species. As such, the validity of CSF Aß as an effect biomarker for brain Aß lowering is confirmed preclinically. Meanwhile, we have been able to reproduce the dose-dependent separation between brain and CSF effect profiles using simulations. We further discuss the implications of our findings to drug discovery and development with regard to preclinical PK/PD characterization and clinical prediction of Aß lowering in the brain.


Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Brain/metabolism , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Animals , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Cerebrospinal Fluid/chemistry , Guinea Pigs , Male , Mice , Mice, 129 Strain , Protease Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley
15.
J Pharmacol Exp Ther ; 339(3): 922-34, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21930801

ABSTRACT

Alzheimer's disease (AD) poses a serious public health threat to the United States. Disease-modifying drugs slowing AD progression are in urgent need, but they are still unavailable. According to the amyloid cascade hypothesis, inhibition of ß- or γ-secretase, key enzymes for the production of amyloid ß (Aß), may be viable mechanisms for the treatment of AD. For the discovery of γ-secretase inhibitors (GSIs), the APP-overexpressing Tg2576 mouse has been the preclinical model of choice, in part because of the ease of detection of Aß species in its brain, plasma, and cerebrospinal fluid (CSF). Some biological observations and practical considerations, however, argue against the use of the Tg2576 mouse. We reasoned that an animal model would be suitable for GSI discovery if the pharmacokinetic (PK)/pharmacodynamic (PD) relationship of a compound for Aß lowering in this model is predictive of that in human. In this study, we assessed whether the background 129/SVE strain is a suitable preclinical pharmacology model for identifying new GSIs by evaluating the translatability of the intrinsic PK/PD relationships for brain and CSF Aß across the Tg2576 and 129/SVE mouse and human. Using semimechanistically based PK/PD modeling, our analyses indicated that the intrinsic PK/PD relationship for brain Aßx-42 and CSF Aßx-40 in the 129/SVE mouse is indicative of that for human CSF Aß. This result, in conjunction with practical considerations, strongly suggests that the 129/SVE mouse is a suitable model for GSI discovery. Concurrently, the necessity and utilities of PK/PD modeling for rational interpretation of Aß data are established.


Subject(s)
Alanine/analogs & derivatives , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Azepines/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Oxadiazoles/pharmacology , Sulfonamides/pharmacology , Alanine/blood , Alanine/pharmacokinetics , Alanine/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/blood , Amyloid beta-Protein Precursor/metabolism , Animals , Azepines/blood , Azepines/pharmacokinetics , Brain/drug effects , Brain/enzymology , Drug Evaluation, Preclinical , Enzyme Inhibitors/blood , Enzyme Inhibitors/pharmacokinetics , Humans , Mice , Mice, 129 Strain , Mice, Transgenic , Models, Animal , Oxadiazoles/blood , Oxadiazoles/pharmacokinetics , Small Molecule Libraries , Sulfonamides/blood , Sulfonamides/pharmacokinetics
16.
J Pharmacol Exp Ther ; 338(2): 615-21, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21558437

ABSTRACT

The α(2)δ auxiliary subunits (α(2)δ-1 and α(2)δ-2) of voltage-sensitive calcium channels are thought to be the site of action of pregabalin (Lyrica), a drug that has been shown to be anxiolytic in clinical trials for generalized anxiety disorder. Pregabalin and the chemically related drug gabapentin have similar binding and pharmacology profiles, demonstrating high-affinity, in vitro binding to both α(2)δ-1 and α(2)δ-2 subunits. Two independent point mutant mouse strains were generated in which either the α(2)δ-1 subunit (arginine-to-alanine mutation at amino acid 217; R217A) or the α(2)δ-2 subunit (arginine-to-alanine mutation at amino acid 279; R279A) were rendered insensitive to gabapentin or pregabalin binding. These strains were used to characterize the activity of pregabalin in the Vogel conflict test, a measure of anxiolytic-like activity. Pregabalin showed robust anticonflict activity in wild-type littermates from each strain at a dose of 10 mg/kg but was inactive in the α(2)δ-1 (R217A) mutants up to a dose of 320 mg/kg. In contrast, pregabalin was active in the α(2)δ-2 (R279A) point mutants at 10 and 32 mg/kg. The positive control phenobarbital was active in mice carrying either mutation. These data suggest that the anxiolytic-like effects of pregabalin are mediated by binding of the drug to the α(2)δ-1 subunit.


Subject(s)
Anti-Anxiety Agents/metabolism , Calcium Channels/genetics , Conflict, Psychological , gamma-Aminobutyric Acid/analogs & derivatives , Alanine/genetics , Animals , Anti-Anxiety Agents/therapeutic use , Anxiety/genetics , Anxiety/metabolism , Anxiety/prevention & control , Arginine/genetics , Calcium Channels/metabolism , Male , Mice , Mice, 129 Strain , Mice, Congenic , Mice, Inbred C57BL , Mice, Mutant Strains , Point Mutation/drug effects , Point Mutation/genetics , Pregabalin , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/therapeutic use
17.
Bioorg Med Chem Lett ; 20(16): 4749-52, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20663668

ABSTRACT

We report the synthesis of a series of [3.2.1]azabicyclic biaryl ethers as selective agonists of alpha3- and alpha6-containing nicotinic receptors. In particular, compound 17a from this series is a potent alpha3beta4 and alpha6/4beta4 receptor agonist in terms of both binding and functional activity. Compound 17a also shows potent in vivo activity in CNS-mediated animal models that are sensitive to antipsychotic drugs. Compound 17a may thus be a useful tool for studying the role of alpha3beta4 and alpha6/4beta4 nicotinic receptors in CNS pharmacology.


Subject(s)
Azabicyclo Compounds/chemistry , Nicotinic Agonists/chemistry , Receptors, Nicotinic/chemistry , Sulfonamides/chemistry , Azabicyclo Compounds/chemical synthesis , Azabicyclo Compounds/pharmacology , Nicotinic Agonists/chemical synthesis , Nicotinic Agonists/pharmacology , Receptors, Nicotinic/metabolism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology
18.
Eur J Pharmacol ; 591(1-3): 136-41, 2008 Sep 04.
Article in English | MEDLINE | ID: mdl-18593577

ABSTRACT

An in vivo binding assay is characterized for [(3)H]M100907 binding to rat brain, as a measure of 5-HT(2A) receptor occupancy. Dose-response analyses were performed for various 5-HT(2A) antagonist reference agents, providing receptor occupancy ED(50) values in conjunction with plasma and brain concentration levels. Ketanserin and M100907 yielded dose-dependent increases in 5-HT(2A) receptor occupancy with ED(50)s of 0.316 mg/kg and 0.100 mg/kg, respectively. The atypical antipsychotics risperidone, olanzapine, and clozapine dose-dependently inhibited in vivo [(3)H]M100907 binding with ED(50) values of 0.051, 0.144, and 1.17 mg/kg, respectively. In contrast, the typical antipsychotic haloperidol exhibited only 20.1% receptor occupancy at 10 mg/kg despite producing dose-dependent increases in plasma and brain exposure levels. The novel psychopharmacologic agent asenapine dose-dependently occupied 5-HT(2A) receptors in rat brain with an ED(50) of 0.011 mg/kg, demonstrating higher 5-HT(2A) receptor potency compared with the other atypical antipsychotics tested. This enhanced potency was supported by a lower plasma exposure EC(50) of 0.477 ng/ml, compared with risperidone (1.57 ng/ml) and olanzapine (7.81 ng/ml) and was confirmed in time course studies. The validated [(3)H]M100907 rat in vivo binding assay allows for preclinical measurement of 5-HT(2A) receptor occupancy, providing essential data for understanding the pharmacological profile of novel antipsychotic agents. Additionally, the corresponding plasma and brain drug exposure data analyses provides a valuable data set for 5-HT(2A) reference agents by enabling direct comparison with any complementary studies performed in rats, thus providing a foundation for predictive pharmacokinetic/pharmacodynamic models and, importantly, allowing for translation to human receptor occupancy studies using [(11)C]M100907 positron emission tomography.


Subject(s)
Fluorobenzenes/metabolism , Piperidines/metabolism , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin Antagonists/metabolism , Animals , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/metabolism , Antipsychotic Agents/pharmacokinetics , Brain/metabolism , Dose-Response Relationship, Drug , Fluorobenzenes/administration & dosage , Fluorobenzenes/pharmacokinetics , Humans , Male , Piperidines/administration & dosage , Piperidines/pharmacokinetics , Positron-Emission Tomography/methods , Protein Binding , Rats , Rats, Sprague-Dawley , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/pharmacokinetics , Tissue Distribution
19.
Anal Chem ; 79(21): 8010-5, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17892272

ABSTRACT

A fully automated protein precipitation technique for biological sample preparation has been developed for the quantitation of drugs in various biological matrixes. All liquid handling during sample preparation was automated using a Hamilton MicroLab Star Robotic workstation, which included the preparation of standards and controls from a Watson laboratory information management system generated work list, shaking of 96-well plates, and vacuum application. Processing time is less than 30 s per sample or approximately 45 min per 96-well plate, which is then immediately ready for injection onto an LC-MS/MS system. An overview of the process workflow is discussed, including the software development. Validation data are also provided, including specific liquid class data as well as comparative data of automated vs manual preparation using both quality controls and actual sample data. The efficiencies gained from this automated approach are described.


Subject(s)
Tandem Mass Spectrometry/methods , 2-Propanol/analysis , Acetonitriles/analysis , Animals , Automation , Chromatography, Liquid/methods , Chromatography, Liquid/standards , Dimethyl Sulfoxide/analysis , Plasma/chemistry , Quality Control , Rats , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Software , Specimen Handling , Tandem Mass Spectrometry/standards , Water/analysis
20.
J Parasitol ; 89(1): 190-2, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12659329

ABSTRACT

Gametocyte sex ratio of the malaria parasite Plasmodium mexicanum is variable in its host, the western fence lizard (Sceloporus occidentalis), both among infections and within infections over time. We sought to determine the effect of host physiological quality on the gametocyte sex ratio in experimentally induced infections of P. mexicanum. Adult male lizards were assigned to 4 treatment groups: castrated, castrated + testosterone implant, sham implant, and unmanipulated control. No significant difference in gametocyte sex ratio was found among the 4 treatment groups. Two other analyses were performed. A surgery stress analysis compared infection sex ratio of castrated, castrated + testosterone implant, and sham implant groups with the unmanipulated control group. A testosterone alteration analysis compared infection sex ratio of the castrated and castrated + testosterone implant groups with the sham implant and unmanipulated control groups. Again, no significant difference was observed for these 2 comparisons. Thus, physiological changes expected for experimentally induced variation in host testosterone and the stress of surgery were not associated with any change in the gametocyte sex ratio. Also, theex-periment suggests testosterone is not a cue for shaping the sex ratio of gametocytes in P. mexicanum. These results are related to the evolutionary theory of sex ratios as applied to malaria parasites.


Subject(s)
Lizards/parasitology , Malaria/veterinary , Plasmodium/physiology , Testosterone/physiology , Animals , Down-Regulation , Drug Implants , Female , Host-Parasite Interactions , Immune System/physiology , Lizards/physiology , Lizards/surgery , Malaria/immunology , Malaria/parasitology , Male , Orchiectomy/adverse effects , Random Allocation , Sex Ratio , Stress, Physiological/etiology , Stress, Physiological/physiopathology , Stress, Physiological/veterinary , Testosterone/administration & dosage , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...