Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Sci Rep ; 14(1): 10092, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698141

ABSTRACT

Carotid artery webs (CaW) are non-atherosclerotic projections into the vascular lumen and have been linked to up to one-third of cryptogenic strokes in younger patients. Determining how CaW affects local hemodynamics is essential for understanding clot formation and stroke risk. Computational fluid dynamics simulations were used to investigate patient-specific hemodynamics in carotid artery bifurcations with CaW, bifurcations with atherosclerotic lesions having a similar degree of lumen narrowing, and with healthy carotid bifurcations. Simulations were conducted using segmented computed tomography angiography geometries with inlet boundary conditions extracted from 2D phase contrast MRI scans. The study included carotid bifurcations with CaW (n = 13), mild atherosclerosis (n = 7), and healthy bifurcation geometries (n = 6). Hemodynamic parameters associated with vascular dysfunction and clot formation, including shear rate, oscillatory shear index (OSI), low velocity, and flow stasis were calculated and compared between the subject groups. Patients with CaW had significantly larger regions containing low shear rate, high OSI, low velocity, and flow stasis in comparison to subjects with mild atherosclerosis or normal bifurcations. These abnormal hemodynamic metrics in patients with CaW are associated with clot formation and vascular dysfunction and suggest that hemodynamic assessment may be a tool to assess stroke risk in these patients.


Subject(s)
Carotid Artery Diseases , Hemodynamics , Humans , Male , Carotid Artery Diseases/physiopathology , Carotid Artery Diseases/diagnostic imaging , Female , Middle Aged , Aged , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiopathology , Computed Tomography Angiography , Thrombosis/physiopathology , Thrombosis/diagnostic imaging , Magnetic Resonance Imaging
2.
Comput Biol Med ; 170: 108041, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38330820

ABSTRACT

OBJECTIVE: Currently, the long-term outcomes of uncomplicated type B aortic dissection (TBAD) patients managed with optimal medical therapy (OMT) remain poor. Aortic expansion is a major factor that determines patient long-term survival. The objective of this study was to investigate the association between anatomic shape features and (i) OMT outcome; (ii) aortic growth rate for TBAD patients initially treated with OMT. METHODS: 108 CT images of TBAD in the acute and chronic phases were collected from 46 patients who were initially treated with OMT. Statistical shape models (SSM) of TBAD were constructed to extract shape features from the earliest initial CT scans of each patient by using principal component analysis (PCA) and partial least square (PLS) regression. Additionally, conventional shape features (e.g., aortic diameter) were quantified from the earliest CT scans as a baseline for comparison. We identified conventional and SSM features that were significant in separating OMT "success" and failure patients. Moreover, the aortic growth rate was predicted by SSM and conventional features using linear and nonlinear regression with cross-validations. RESULTS: Size-related SSM and conventional features (mean aortic diameter: p=0.0484, centerline length: p=0.0112, PCA score c1: p=0.0192, and PLS scores t1: p=0.0004, t2: p=0.0274) were significantly different between OMT success and failure groups, but these features were incapable of predicting the aortic growth rate. SSM shape features showed superior results in growth rate prediction compared to conventional features. Using multiple linear regression, the conventional, PCA, and PLS shape features resulted in root mean square errors (RMSE) of 1.23, 0.85, and 0.84 mm/year, respectively, in leave-one-out cross-validations. Nonlinear support vector regression (SVR) led to improved RMSE of 0.99, 0.54, and 0.43 mm/year, for the conventional, PCA, and PLS features, respectively. CONCLUSION: Size-related shape features of the earliest scan were correlated with OMT failure but led to large errors in the prediction of the aortic growth rate. SSM features in combination with nonlinear regression could be a promising avenue to predict the aortic growth rate.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Aortic Aneurysm, Thoracic/surgery , Endovascular Procedures/adverse effects , Risk Factors , Aortic Dissection/diagnostic imaging , Aortic Dissection/drug therapy , Retrospective Studies , Treatment Outcome
3.
Eur Radiol Exp ; 8(1): 4, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38172486

ABSTRACT

Recent advancements in diagnostic CT detector technology have made it possible to resolve anatomical features smaller than 20 LP/cm, referred to as ultra-high-resolution (UHR) CT. Subtle biological motions that did not affect standard-resolution (SR) CT may not be neglected in UHR. This study aimed to quantify the cardiac-induced motion of the pancreas and simulate its impact on the image quality of UHR-CT. We measured the displacement of the head of the pancreas in three healthy volunteers using Displacement Encoding with Stimulated Echoes (DENSE) MRI. The results were used to simulate SR- and UHR-CT acquisitions affected by pancreatic motion.We found pancreatic displacement in the 0.24-1.59 mm range during one cardiac cycle across the subjects. The greatest displacement was observed in the anterior-posterior direction. The time to peak displacement varied across subjects. Both SR and UHR images showed reduced image quality, as measured by radial modulation transfer function, due to cardiac-induced motion, but the motion artifacts caused more severe degradation in UHR acquisitions. Our investigation of cardiac-induced pancreatic displacement reveals its potential to degrade both standard and UHR-CT scans. To fully utilize the improvement in spatial resolution offered by UHR-CT, the effects of cardiac-induced motion in the abdomen need to be understood and corrected.Relevance statement Advancements in CT detector technology have enhanced CT scanner spatial resolution to approximately 100 µm. Consequently, previously ignored biological motions such as the cardiac-induced motion of the pancreas now demand attention to fully utilize this improved resolution.


Subject(s)
Abdominal Cavity , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Motion , Pancreas/diagnostic imaging
5.
J Magn Reson Imaging ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37706274

ABSTRACT

BACKGROUND: Carotid webs (CaWs) are fibromuscular projections in the internal carotid artery (ICA) that cause mild luminal narrowing (<50%), but may be causative in up to one-third of seemingly cryptogenic strokes. Understanding hemodynamic alterations caused by CaWs is imperative to assessing stroke risk. Time-Average Wall Shear Stress (TAWSS) and Oscillatory Shear Index (OSI) are hemodynamic parameters linked to vascular dysfunction and thrombosis. PURPOSE: To test the hypothesis: "CaWs are associated with lower TAWSS and higher OSI than mild atherosclerosis or healthy carotid bifurcation." STUDY TYPE: Prospective study. POPULATION: A total of 35 subjects (N = 14 bifurcations with CaW, 11F, age: 49 ± 10, 10 mild atherosclerosis 6F, age: 72 ± 9, 11 healthy 9F, age: 42 ± 13). FIELD STRENGTH/SEQUENCE: 4D flow/STAR-MATCH/3D TOF/3T MRI, CTA. ASSESSMENT: 4D Flow velocity data were analyzed in two ways: 1) 3D ROI in the ICA bulbar segment (complex flow patterns are expected) was used to quantify the regions with low TAWSS and high OSI. 2) 2D planes were placed perpendicular to the centerline of the carotid bifurcation for detailed analysis of TAWSS and OSI. STATISTICAL TESTS: Independent-samples Kruskal-Wallis-H test with 0.05 used for statistical significance. RESULTS: The percent surface area where low TAWSS was present in the ICA bulb was 12.3 ± 8.0% (95% CI: 7.6-16.9) in CaW subjects, 1.6 ± 1.9% (95% CI: 0.2-2.9) in atherosclerosis, and 8.5 ± 7.7% (95% CI: 3.6-13.4) in healthy subjects, all differences were statistically significant (ƞ2 = 0.3 [95% CI: 0.05-0.5], P-value CaW vs. healthy = 0.2). OSI had similar values in the CCA between groups (ƞ2 = 0.07 [95% CI: 0.0-0.2], P-value = 0.5), but OSI was significantly higher downstream of the bifurcation in CaW subjects compared to atherosclerosis and normal subjects. OSI returned to similar values between groups 1.5 diameters distal to the bifurcation (ƞ2 = 0.03 [95% CI: 0.0-0.2], P-value = 0.7). CONCLUSION: Lower TAWSS and higher OSI are present in the ICA bulb in patients with CaW when compared to patients with atherosclerotic or healthy subjects. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.

6.
Neuroradiology ; 65(10): 1535-1543, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37644163

ABSTRACT

PURPOSE: Chiari malformation type I (CMI) patients have been independently shown to have both increased resistance to cerebrospinal fluid (CSF) flow in the cervical spinal canal and greater cardiac-induced neural tissue motion compared to healthy controls. The goal of this paper is to determine if a relationship exists between CSF flow resistance and brain tissue motion in CMI subjects. METHODS: Computational fluid dynamics (CFD) techniques were employed to compute integrated longitudinal impedance (ILI) as a measure of unsteady resistance to CSF flow in the cervical spinal canal in thirty-two CMI subjects and eighteen healthy controls. Neural tissue motion during the cardiac cycle was assessed using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) technique. RESULTS: The results demonstrate a positive correlation between resistance to CSF flow and the maximum displacement of the cerebellum for CMI subjects (r = 0.75, p = 6.77 × 10-10) but not for healthy controls. No correlation was found between CSF flow resistance and maximum displacement in the brainstem for CMI or healthy subjects. The magnitude of resistance to CSF flow and maximum cardiac-induced brain tissue motion were not statistically different for CMI subjects with and without the presence of five CMI symptoms: imbalance, vertigo, swallowing difficulties, nausea or vomiting, and hoarseness. CONCLUSION: This study establishes a relationship between CSF flow resistance in the cervical spinal canal and cardiac-induced brain tissue motion in the cerebellum for CMI subjects. Further research is necessary to understand the importance of resistance and brain tissue motion in the symptomatology of CMI.


Subject(s)
Arnold-Chiari Malformation , Humans , Arnold-Chiari Malformation/diagnostic imaging , Brain/diagnostic imaging , Cerebellum , Brain Stem , Healthy Volunteers
7.
Radiol Cardiothorac Imaging ; 5(3): e220196, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37404792

ABSTRACT

Purpose: To develop a three-dimensional (two dimensions + time) convolutional neural network trained with displacement encoding with stimulated echoes (DENSE) data for displacement and strain analysis of cine MRI. Materials and Methods: In this retrospective multicenter study, a deep learning model (StrainNet) was developed to predict intramyocardial displacement from contour motion. Patients with various heart diseases and healthy controls underwent cardiac MRI examinations with DENSE between August 2008 and January 2022. Network training inputs were a time series of myocardial contours from DENSE magnitude images, and ground truth data were DENSE displacement measurements. Model performance was evaluated using pixelwise end-point error (EPE). For testing, StrainNet was applied to contour motion from cine MRI. Global and segmental circumferential strain (Ecc) derived from commercial feature tracking (FT), StrainNet, and DENSE (reference) were compared using intraclass correlation coefficients (ICCs), Pearson correlations, Bland-Altman analyses, paired t tests, and linear mixed-effects models. Results: The study included 161 patients (110 men; mean age, 61 years ± 14 [SD]), 99 healthy adults (44 men; mean age, 35 years ± 15), and 45 healthy children and adolescents (21 males; mean age, 12 years ± 3). StrainNet showed good agreement with DENSE for intramyocardial displacement, with an average EPE of 0.75 mm ± 0.35. The ICCs between StrainNet and DENSE and FT and DENSE were 0.87 and 0.72, respectively, for global Ecc and 0.75 and 0.48, respectively, for segmental Ecc. Bland-Altman analysis showed that StrainNet had better agreement than FT with DENSE for global and segmental Ecc. Conclusion: StrainNet outperformed FT for global and segmental Ecc analysis of cine MRI.Keywords: Image Postprocessing, MR Imaging, Cardiac, Heart, Pediatrics, Technical Aspects, Technology Assessment, Strain, Deep Learning, DENSE Supplemental material is available for this article. © RSNA, 2023.

8.
Front Radiol ; 3: 1144004, 2023.
Article in English | MEDLINE | ID: mdl-37492382

ABSTRACT

Introduction: Deep learning (DL)-based segmentation has gained popularity for routine cardiac magnetic resonance (CMR) image analysis and in particular, delineation of left ventricular (LV) borders for LV volume determination. Free-breathing, self-navigated, whole-heart CMR exams provide high-resolution, isotropic coverage of the heart for assessment of cardiac anatomy including LV volume. The combination of whole-heart free-breathing CMR and DL-based LV segmentation has the potential to streamline the acquisition and analysis of clinical CMR exams. The purpose of this study was to compare the performance of a DL-based automatic LV segmentation network trained primarily on computed tomography (CT) images in two whole-heart CMR reconstruction methods: (1) an in-line respiratory motion-corrected (Mcorr) reconstruction and (2) an off-line, compressed sensing-based, multi-volume respiratory motion-resolved (Mres) reconstruction. Given that Mres images were shown to have greater image quality in previous studies than Mcorr images, we hypothesized that the LV volumes segmented from Mres images are closer to the manual expert-traced left ventricular endocardial border than the Mcorr images. Method: This retrospective study used 15 patients who underwent clinically indicated 1.5 T CMR exams with a prototype ECG-gated 3D radial phyllotaxis balanced steady state free precession (bSSFP) sequence. For each reconstruction method, the absolute volume difference (AVD) of the automatically and manually segmented LV volumes was used as the primary quantity to investigate whether 3D DL-based LV segmentation generalized better on Mcorr or Mres 3D whole-heart images. Additionally, we assessed the 3D Dice similarity coefficient between the manual and automatic LV masks of each reconstructed 3D whole-heart image and the sharpness of the LV myocardium-blood pool interface. A two-tail paired Student's t-test (alpha = 0.05) was used to test the significance in this study. Results & Discussion: The AVD in the respiratory Mres reconstruction was lower than the AVD in the respiratory Mcorr reconstruction: 7.73 ± 6.54 ml vs. 20.0 ± 22.4 ml, respectively (n = 15, p-value = 0.03). The 3D Dice coefficient between the DL-segmented masks and the manually segmented masks was higher for Mres images than for Mcorr images: 0.90 ± 0.02 vs. 0.87 ± 0.03 respectively, with a p-value = 0.02. Sharpness on Mres images was higher than on Mcorr images: 0.15 ± 0.05 vs. 0.12 ± 0.04, respectively, with a p-value of 0.014 (n = 15). Conclusion: We conclude that the DL-based 3D automatic LV segmentation network trained on CT images and fine-tuned on MR images generalized better on Mres images than on Mcorr images for quantifying LV volumes.

9.
J Biomech Eng ; 145(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37295931

ABSTRACT

Chiari malformation Type I (CMI) is known to have an altered biomechanical environment for the brainstem and cerebellum; however, it is unclear whether these altered biomechanics play a role in the development of CMI symptoms. We hypothesized that CMI subjects have a higher cardiac-induced strain in specific neurological tracts pertaining to balance, and postural control. We measured displacement over the cardiac cycle using displacement encoding with stimulated echoes magnetic resonance imaging in the cerebellum, brainstem, and spinal cord in 37 CMI subjects and 25 controls. Based on these measurements, we computed strain, translation, and rotation in tracts related to balance. The global strain on all tracts was small (<1%) for CMI subject and controls. Strain was found to be nearly doubled in three tracts for CMI subjects compared to controls (p < 0.03). The maximum translation and rotation were ∼150 µm and ∼1 deg, respectively and 1.5-2 times greater in CMI compared to controls in four tracts (p < 0.005). There was no significant difference between strain, translation, and rotation on the analyzed tracts in CMI subjects with imbalance compared to those without imbalance. A moderate correlation was found between cerebellar tonsillar position and strain on three tracts. The lack of statistically significant difference between strain in CMI subjects with and without imbalance could imply that the magnitude of the observed cardiac-induced strain was too small to cause substantial damage to the tissue (<1%). Activities such as coughing, or Valsalva may produce a greater strain.


Subject(s)
Arnold-Chiari Malformation , Humans , Arnold-Chiari Malformation/diagnostic imaging , Arnold-Chiari Malformation/pathology , Cerebellum/pathology , Spinal Cord , Magnetic Resonance Imaging , Postural Balance
10.
Cardiovasc Eng Technol ; 14(3): 476-488, 2023 06.
Article in English | MEDLINE | ID: mdl-37156900

ABSTRACT

BACKGROUND: Three-dimensional, ECG-gated, time-resolved, three-directional, velocity-encoded phase-contrast MRI (4D flow MRI) has been applied extensively to measure blood velocity in great vessels but has been much less used in diseased carotid arteries. Carotid artery webs (CaW) are non-inflammatory intraluminal shelf-like projections into the internal carotid artery (ICA) bulb that are associated with complex flow and cryptogenic stroke. PURPOSE: Optimize 4D flow MRI for measuring the velocity field of complex flow in the carotid artery bifurcation model that contains a CaW. METHODS: A 3D printed phantom model created from computed tomography angiography (CTA) of a subject with CaW was placed in a pulsatile flow loop within the MRI scanner. 4D Flow MRI images of the phantom were acquired with five different spatial resolutions (0.50-2.00  mm3) and four different temporal resolutions (23-96 ms) and compared to a computational fluid dynamics (CFD) solution of the flow field as a reference. We examined four planes perpendicular to the vessel centerline, one in the common carotid artery (CCA) and three in the internal carotid artery (ICA) where complex flow was expected. At these four planes pixel-by-pixel velocity values, flow, and time average wall shear stress (TAWSS) were compared between 4D flow MRI and CFD. HYPOTHESIS: An optimized 4D flow MRI protocol will provide a good correlation with CFD velocity and TAWSS values in areas of complex flow within a clinically feasible scan time (~ 10 min). RESULTS: Spatial resolution affected the velocity values, time average flow, and TAWSS measurements. Qualitatively, a spatial resolution of 0.50  mm3 resulted in higher noise, while a lower spatial resolution of 1.50-2.00  mm3 did not adequately resolve the velocity profile. Isotropic spatial resolutions of 0.50-1.00  mm3 showed no significant difference in total flow compared to CFD. Pixel-by-pixel velocity correlation coefficients between 4D flow MRI and CFD were > 0.75 for 0.50-1.00  mm3 but were < 0.5 for 1.50 and 2.00  mm3. Regional TAWSS values determined from 4D flow MRI were generally lower than CFD and decreased at lower spatial resolutions (larger pixel sizes). TAWSS differences between 4D flow and CFD were not statistically significant at spatial resolutions of 0.50-1.00  mm3 but were different at 1.50 and 2.00 mm3. Differences in temporal resolution only affected the flow values when temporal resolution was > 48.4 ms; temporal resolution did not affect TAWSS values. CONCLUSION: A spatial resolution of 0.74-1.00  mm3 and a temporal resolution of 23-48 ms (1-2 k-space segments) provides a 4D flow MRI protocol capable of imaging velocity and TAWSS in regions of complex flow within the carotid bifurcation at a clinically acceptable scan time.


Subject(s)
Hemodynamics , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Carotid Arteries/diagnostic imaging , Pulsatile Flow , Stress, Mechanical , Blood Flow Velocity
11.
J Magn Reson Imaging ; 58(2): 360-378, 2023 08.
Article in English | MEDLINE | ID: mdl-37013364

ABSTRACT

Cranio-spinal volume and pressure changes associated with the cardiac-cycle and respiration are altered in Chiari I malformation (CMI) due to obstruction of cerebrospinal fluid (CSF) flow at the foramen magnum. With the introduction of motion-sensitive MRI sequences, it was envisioned that these could provide noninvasive information about volume-pressure dynamics at the cranio-cervical junction in CMI hitherto available only through invasive pressure measurements. Since the early 1990s, multiple studies have assessed CSF flow and brain motion in CMI. However, differences in design and varied approaches in the presentation of results and conclusions makes it difficult to fully comprehend the role of MR imaging of CSF flow and brain motion in CMI. In this review, a cohesive summary of the current status of MRI assessment of CSF flow and brain motion in CMI is presented. Simplified versions of the results and conclusions of previous studies are presented by dividing the studies in distinct topics: 1) comparing CSF flow and brain motion between healthy subjects (HS) and CMI patients (before and after surgery), 2) comparing CSF flow and brain motion to CMI severity and symptoms, and 3) comparing CSF flow and brain motion in CMI with and without syringomyelia. Finally, we will discuss our vision of the future directions of MR imaging in CMI patients. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: 5.


Subject(s)
Arnold-Chiari Malformation , Syringomyelia , Humans , Arnold-Chiari Malformation/diagnostic imaging , Brain/diagnostic imaging , Pressure , Motion , Syringomyelia/complications , Syringomyelia/surgery , Magnetic Resonance Imaging/methods , Cerebrospinal Fluid/diagnostic imaging
12.
J Biomech ; 146: 111413, 2023 01.
Article in English | MEDLINE | ID: mdl-36535100

ABSTRACT

Four-dimensional flow magnetic resonance imaging (i.e., 4D flow MRI) has become a valuable tool for the in vivo assessment of blood flow within large vessels and cardiac chambers. As wall shear stress (WSS) has been correlated with the development and progression of cardiovascular disease, focus has been directed at developing techniques to quantify WSS directly from 4D flow MRI data. The goal of this study was to compare the accuracy of two such techniques - termed the velocity and flow-based methods - in the setting of simplified and complex flow scenarios. Synthetic MR data were created from exact solutions to the Navier-Stokes equations for the steady and pulsatile flow of an incompressible, Newtonian fluid through a rigid cylinder. In addition, synthetic MR data were created from the predicted velocity fields derived from a fluid-structure interaction (FSI) model of pulsatile flow through a thick-walled, multi-layered model of the carotid bifurcation. Compared to the analytical solutions for steady and pulsatile flow, the flow-based method demonstrated greater accuracy than the velocity-based method in calculating WSS across all changes in fluid velocity/flow rate, tube radius, and image signal-to-noise (p < 0.001). Furthermore, the velocity-based method was more sensitive to boundary segmentation than the flow-based method. When compared to results from the FSI model, the flow-based method demonstrated greater accuracy than the velocity-based method with average differences in time-averaged WSS of 0.31 ± 1.03 Pa and 0.45 ± 1.03 Pa, respectively (p <0.005). These results have implications on the utility, accuracy, and clinical translational of methods to determine WSS from 4D flow MRI.


Subject(s)
Hemodynamics , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Carotid Arteries/diagnostic imaging , Carotid Arteries/physiology , Pulsatile Flow , Stress, Mechanical , Blood Flow Velocity/physiology , Models, Cardiovascular
13.
Cardiovasc Eng Technol ; 14(1): 1-12, 2023 02.
Article in English | MEDLINE | ID: mdl-35618870

ABSTRACT

PURPOSE: To evaluate the agreement of 4D flow cMRI-derived bulk flow features and fluid (blood) velocities in the carotid bifurcation using prospective and retrospective gating techniques. METHODS: Prospective and retrospective ECG-gated three-dimensional (3D) cine phase-contrast cardiac MRI with three-direction velocity encoding (i.e., 4D flow cMRI) data were acquired in ten carotid bifurcations from men (n = 3) and women (n = 2) that were cardiovascular disease-free. MRI sequence parameters were held constant across all scans except temporal resolution values differed. Velocity data were extracted from the fluid domain and evaluated across the entire volume or at defined anatomic planes (common, internal, external carotid arteries). Qualitative agreement between gating techniques was performed by visualizing flow streamlines and topographical images, and statistical comparisons between gating techniques were performed across the fluid volume and defined anatomic regions. RESULTS: Agreement in the kinematic data (e.g., bulk flow features and velocity data) were observed in the prospectively and retrospectively gated acquisitions. Voxel differences in time-averaged, peak systolic, and diastolic-averaged velocity magnitudes between gating techniques across all volunteers were 2.7%, 1.2%, and 6.4%, respectively. No significant differences in velocity magnitudes or components ([Formula: see text], [Formula: see text], [Formula: see text]) were observed. Importantly, retrospective acquisitions captured increased retrograde flow in the internal carotid artery (i.e., carotid sinus) compared to prospective acquisitions (10.4 ± 6.3% vs. 4.6 ± 5.3%; [Formula: see text] < 0.05). CONCLUSION: Prospective and retrospective ECG-gated 4D flow cMRI acquisitions provide comparable evaluations of fluid velocities, including velocity vector components, in the carotid bifurcation. However, the increased temporal coverage of retrospective acquisitions depicts increased retrograde flow patterns (i.e., disturbed flow) not captured by the prospective gating technique.


Subject(s)
Carotid Arteries , Magnetic Resonance Imaging , Male , Humans , Female , Retrospective Studies , Prospective Studies , Blood Flow Velocity , Magnetic Resonance Imaging/methods , Carotid Arteries/diagnostic imaging , Imaging, Three-Dimensional/methods , Reproducibility of Results
14.
Front Cardiovasc Med ; 9: 869259, 2022.
Article in English | MEDLINE | ID: mdl-35811698

ABSTRACT

Background: A clinical study comparing the hemodynamic outcomes of transcatheter mitral valve replacement (TMVR) with vs. without Laceration of the Anterior Mitral leaflet to Prevent Outflow Obstruction (LAMPOON) has never been designed nor conducted. Aims: To quantify the hemodynamic impact of LAMPOON in TMVR using patient-specific computational (in silico) models. Materials: Eight subjects from the LAMPOON investigational device exemption trial were included who had acceptable computed tomography (CT) data for analysis. All subjects were anticipated to be at prohibitive risk of left ventricular outflow tract (LVOT) obstruction from TMVR, and underwent successful LAMPOON immediately followed by TMVR. Using post-procedure CT scans, two 3D anatomical models were created for each subject: (1) TMVR with LAMPOON (performed procedure), and (2) TMVR without LAMPOON (virtual control). A validated computational fluid dynamics (CFD) paradigm was then used to simulate the hemodynamic outcomes for each condition. Results: LAMPOON exposed on average 2 ± 0.6 transcatheter valve cells (70 ± 20 mm2 total increase in outflow area) which provided an additional pathway for flow into the LVOT. As compared to TMVR without LAMPOON, TMVR with LAMPOON resulted in lower peak LVOT velocity, lower peak LVOT gradient, and higher peak LVOT effective orifice area by 0.4 ± 0.3 m/s (14 ± 7% improvement, p = 0.006), 7.6 ± 10.9 mmHg (31 ± 17% improvement, p = 0.01), and 0.2 ± 0.1 cm2 (17 ± 9% improvement, p = 0.002), respectively. Conclusion: This was the first study to permit a quantitative, patient-specific comparison of LVOT hemodynamics following TMVR with and without LAMPOON. The LAMPOON procedure achieved a critical increment in outflow area which was effective for improving LVOT hemodynamics, particularly for subjects with a small neo-left ventricular outflow tract (neo-LVOT).

15.
J Biomech Eng ; 144(9)2022 09 01.
Article in English | MEDLINE | ID: mdl-35377416

ABSTRACT

Wall shear stress (WSS) is an important mediator of cardiovascular pathologies and there is a need for its reliable evaluation as a potential prognostic indicator. The purpose of this work was to develop a method that quantifies WSS from two-dimensional (2D) phase contrast magnetic resonance (PCMR) imaging derived flow waveforms, apply this method to PCMR data acquired in the abdominal aorta of healthy volunteers, and to compare PCMR-derived WSS values to values predicted from a computational fluid dynamics (CFD) simulation. The method uses PCMR-derived flow versus time waveforms constrained by the Womersley solution for pulsatile flow in a cylindrical tube. The method was evaluated for sensitivity to input parameters, intrastudy repeatability and was compared with results from a patient-specific CFD simulation. 2D-PCMR data were acquired in the aortas of healthy men (n = 12) and women (n = 15) and time-averaged WSS (TAWSS) was compared. Agreement was observed when comparing TAWSS between CFD and the PCMR flow-based method with a correlation coefficient of 0.88 (CFD: 15.0 ± 1.9 versus MRI: 13.5 ± 2.4 dyn/cm2) though comparison of WSS values between the PCMR-based method and CFD predictions indicate that the PCMR method underestimated instantaneous WSS by 3.7 ± 7.6 dyn/cm2. We found no significant difference in TAWSS magnitude between the sexes; 8.19 ± 2.25 versus 8.07 ± 1.71 dyn/cm2, p = 0.16 for men and women, respectively.


Subject(s)
Aorta, Abdominal , Models, Cardiovascular , Aorta, Abdominal/diagnostic imaging , Blood Flow Velocity , Female , Humans , Magnetic Resonance Imaging , Male , Stress, Mechanical
16.
J Cardiovasc Magn Reson ; 24(1): 23, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35369885

ABSTRACT

BACKGROUND: While multiple cardiovascular magnetic resonance (CMR) methods provide excellent reproducibility of global circumferential and global longitudinal strain, achieving highly reproducible segmental strain is more challenging. Previous single-center studies have demonstrated excellent reproducibility of displacement encoding with stimulated echoes (DENSE) segmental circumferential strain. The present study evaluated the reproducibility of DENSE for measurement of whole-slice or global circumferential (Ecc), longitudinal (Ell) and radial (Err) strain, torsion, and segmental Ecc at multiple centers. METHODS: Six centers participated and a total of 81 subjects were studied, including 60 healthy subjects and 21 patients with various types of heart disease. CMR utilized 3 T scanners, and cine DENSE images were acquired in three short-axis planes and in the four-chamber long-axis view. During one imaging session, each subject underwent two separate DENSE scans to assess inter-scan reproducibility. Each subject was taken out of the scanner and repositioned between the scans. Intra-user, inter-user-same-site, inter-user-different-site, and inter-user-Human-Deep-Learning (DL) comparisons assessed the reproducibility of different users analyzing the same data. Inter-scan comparisons assessed the reproducibility of DENSE from scan to scan. The reproducibility of whole-slice or global Ecc, Ell and Err, torsion, and segmental Ecc were quantified using Bland-Altman analysis, the coefficient of variation (CV), and the intraclass correlation coefficient (ICC). CV was considered excellent for CV ≤ 10%, good for 10% < CV ≤ 20%, fair for 20% < CV ≤ 40%, and poor for CV > 40. ICC values were considered excellent for ICC > 0.74, good for ICC 0.6 < ICC ≤ 0.74, fair for ICC 0.4 < ICC ≤ 0.59, poor for ICC < 0.4. RESULTS: Based on CV and ICC, segmental Ecc provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL reproducibility and good-excellent inter-scan reproducibility. Whole-slice Ecc and global Ell provided excellent intra-user, inter-user-same-site, inter-user-different-site, inter-user-Human-DL and inter-scan reproducibility. The reproducibility of torsion was good-excellent for all comparisons. For whole-slice Err, CV was in the fair-good range, and ICC was in the good-excellent range. CONCLUSIONS: Multicenter data show that 3 T CMR DENSE provides highly reproducible whole-slice and segmental Ecc, global Ell, and torsion measurements in healthy subjects and heart disease patients.


Subject(s)
Heart Diseases , Magnetic Resonance Imaging, Cine , Healthy Volunteers , Heart Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging, Cine/methods , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results
17.
Med Hypotheses ; 1582022 Jan.
Article in English | MEDLINE | ID: mdl-34992329

ABSTRACT

Chiari malformation Type I (CMI) is characterized by herniation of the cerebellar tonsils through the foramen magnum. The pathophysiology of CMI is not well elucidated; however, the prevailing theory focuses on the underdevelopment of the posterior cranial fossa which results in tonsillar herniation. Symptoms are believed to be due to the herniation causing resistance to the natural flow of cerebrospinal fluid (CSF) and exerting a mass effect on nearby neural tissue. However, asymptomatic cases vastly outnumber symptomatic ones and it is not known why some people become symptomatic. Recently, it has been proposed that CMI symptoms are primarily due to instability of either the atlanto-axial (AA) or the atlanto-occipital (AO) joint and the cerebellar tonsils herniate to prevent mechanical pinching. However, only a small percentage of patients exhibit clinical instability and these theories do not account for asymptomatic herniations. We propose that the pathophysiology of adult CMI involves a combination of craniocervical abnormalities which leads to tonsillar herniation and reduced compliance of the cervical spinal canal. Specifically, abnormal AO and/or AA joint morphology leads to chronic cervical instability, often subclinical, in a large portion of CMI patients. This in turn causes overwork of the suboccipital muscles as they try to compensate for the instability. Over time, the repeated, involuntary activation of these muscles leads to mechanical overload of the myodural bridge complex, altering the mechanical properties of the dura it merges with. As a result, the dura becomes stiffer, reducing the overall compliance of the cervical region. This lower compliance, combined with CSF resistance at the same level, leads to intracranial pressure peaks during the cardiac cycle (pulse pressure) that are amplified during activities such as coughing, sneezing, and physical exertion. This increase in pulse pressure reduces the compliance of the cervical subarachnoid space which increases the CSF wave speed in the spinal canal, and further increases pulse pressure in a feedback loop. Finally, the abnormal pressure environment induces greater neural tissue motion and strain, causing microstructural damage to the cerebellum, brainstem, and cervical spinal cord, and leading to symptoms. This hypothesis explains how the combination of craniocervical bony abnormalities, anatomic CSF restriction, and reduced compliance leads to symptoms in adult CMI.


Subject(s)
Arnold-Chiari Malformation , Adult , Cranial Fossa, Posterior , Foramen Magnum , Humans , Magnetic Resonance Imaging , Subarachnoid Space
18.
J Neurointerv Surg ; 14(7): 729-733, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34315802

ABSTRACT

BACKGROUND: Carotid webs (CaWs) are associated with ischemic strokes in younger patients without degrees of stenosis that are traditionally considered clinically significant. OBJECTIVE: To compare the hemodynamic parameters in the internal carotid artery (ICA) bulbar segment in patients with CaW with those in patients with atherosclerotic lesions using time-density curve (TDC) analysis of digital subtraction angiography (DSA) images. METHODS: We retrospectively assessed DSA images of 47 carotid arteries in 41 adult patients who underwent ICA catheter angiography for evaluation after ischemic stroke. Hemodynamic parameters, including full width at half maximum (FWHM) and area under the time-density curve (AUC) as proxies for increased flow stasis, were calculated using TDC analyses of a region of interest (ROI) in the ICA bulb immediately rostral to the web/atherosclerotic plaque, relative to a standardized ROI in the ipsilateral distal common carotid artery (eg, relative FWHM (rFWHM)). Hemodynamic parameters were compared using non-parametric Kruskal-Wallis tests. Logistic regression was used to predict CaW versus mild/moderate atherosclerosis for each hemodynamic parameter, adjusting for degree of stenosis. RESULTS: Mean age of patients was 56.0±13 years, with 22 (53.7%) women. 17 CaWs, 22 atherosclerotic plaques (15 mild/moderate and 7 severe), and eight normal carotid arteries were assessed. Significant between-group differences were present in the relative total AUC (p<0.001), relative AUC at wash out (p=0.031), and relative FWHM (p=0.001). Logistic regression to predict CaW versus mild/moderate atherosclerosis showed that rAUC total had the highest predictive value (pAUC=0.96, 95% CI 0.90 to 1.00), followed by rFWHM (0.87, 95% CI 0.74 to 1.00), and rAUC WO (0.74, 95% CI (0.57 to 0.91). CONCLUSION: CaW results in larger local hemodynamic disruption, characterized by flow stasis, than mild/moderate carotid atherosclerotic lesions, suggesting that CaWs may produce larger regions of thrombogenic flow stasis.


Subject(s)
Atherosclerosis , Carotid Stenosis , Plaque, Atherosclerotic , Adult , Aged , Angiography, Digital Subtraction/methods , Carotid Arteries/pathology , Carotid Stenosis/complications , Carotid Stenosis/diagnostic imaging , Constriction, Pathologic/complications , Female , Hemodynamics , Humans , Male , Middle Aged , Plaque, Atherosclerotic/complications , Retrospective Studies
19.
J Magn Reson Imaging ; 55(6): 1773-1784, 2022 06.
Article in English | MEDLINE | ID: mdl-34704637

ABSTRACT

BACKGROUND: A novel application of cine Displacement ENcoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE MRI) has recently been described to assess regional heterogeneities in circumferential strain around the aortic wall in vivo; however, validation is first required for successful clinical translation. PURPOSE: To validate the quantification of regional circumferential strain around the wall of an aortic phantom using DENSE MRI. STUDY TYPE: In vitro phantom study. POPULATION: Three polyvinyl alcohol aortic phantoms with eight axially oriented nitinol wires embedded evenly around the walls. FIELD STRENGTH/SEQUENCE: 3 T; gradient-echo aortic DENSE MRI with spiral cine readout, gradient-echo phase-contrast MRI (PCMR) with Cartesian cine readout. ASSESSMENT: Phantoms were connected to a pulsatile flow loop and peak DENSE-derived regional circumferential Green strains at 16 equally spaced sectors around the wall were assessed according to previously published algorithms. "True" regional circumferential strains were calculated by manually tracking displacements of the nitinol wires by two independent observers. Normalized circumferential strains (NCS) were calculated by dividing regional strains by the mean strain. Finally, DENSE-derived regional strain was corrected by multiplying regional DENSE NCS by the mean strain calculated from the diameter change on the PCMR. STATISTICAL TESTS: One-sample t-test, Paired-sample t-test, and analysis of variance with Bonferroni correction, coefficient of variation (CoV), Bland-Altman analysis; P < 0.05 was considered statistically significant. RESULTS: Aortic DENSE MRI significantly overestimated circumferential strain compared to the wire-tracking method (mean difference and SD 0.030 ± 0.014, CoV 0.31). However, NCS demonstrated good agreement between DENSE and wire-tracking data (mean difference 0.000 ± 0.172, CoV 0.15). After correcting the DENSE-derived regional strain, the mean difference in regional circumferential strain between DENSE and wire-tracking was significantly reduced to 0.006 ± 0.008, and the CoV was reduced to 0.18. DATA CONCLUSION: For aortic phantoms with mild spatial heterogeneity in circumferential strain, the previously published aortic DENSE MRI technique successfully assessed the regional NCS distribution but overestimated the mean strain. This overestimation is correctable by computing a more accurate mean circumferential strain using a separate cine scan. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Algorithms , Magnetic Resonance Imaging, Cine , Aorta/diagnostic imaging , Humans , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine/methods , Phantoms, Imaging , Reproducibility of Results
20.
Eur Heart J Cardiovasc Imaging ; 23(5): 650-662, 2022 04 18.
Article in English | MEDLINE | ID: mdl-34009283

ABSTRACT

AIMS: To characterize the dynamic nature of the left ventricular outflow tract (LVOT) geometry and flow rate in patients following transcatheter mitral valve replacement (TMVR) with anterior leaflet laceration (LAMPOON) and derive insights to help guide future patient selection. METHODS AND RESULTS: Time-resolved LVOT geometry and haemodynamics were analysed with post-procedure computed tomography and echocardiography in subjects (N = 19) from the LAMPOON investigational device exemption trial. A novel post hoc definition for LVOT obstruction was employed to account for systolic flow rate and quality of life improvement [obstruction was defined as LVOT gradient >30 mmHg or LVOT effective orifice area (EOA) ≤1.15 cm2]. The neo-LVOT and skirt neo-LVOT were observed to vary substantially in area throughout systole (64 ± 27% and 25 ± 14% change in area, respectively). The peak systolic flow rate occurred most commonly just prior to mid-systole, while minimum neo-LVOT (and skirt neo-LVOT) area occurred most commonly in early-diastole. Subjects with LVOT obstruction (n = 5) had smaller skirt neo-LVOT values across systole. Optimal thresholds for skirt neo-LVOT area were phase-specific (260, 210, 200, and 180 mm2 for early-systole, peak flow, mid-systole, and end-systole, respectively). CONCLUSION: The LVOT geometry and flow rate exhibit dynamic characteristics following TMVR with LAMPOON. Subjects with LVOT obstruction had smaller skirt neo-LVOT areas across systole. The authors recommend the use of phase-specific threshold values for skirt neo-LVOT area to guide future patient selection for this procedure. LVOT EOA is a 'flow-independent' metric which has the potential to aid in characterizing LVOT obstruction severity.


Subject(s)
Heart Valve Prosthesis Implantation , Heart Valve Prosthesis , Ventricular Outflow Obstruction , Cardiac Catheterization/methods , Heart Valve Prosthesis Implantation/methods , Humans , Mitral Valve/diagnostic imaging , Mitral Valve/surgery , Quality of Life , Ventricular Outflow Obstruction/diagnostic imaging , Ventricular Outflow Obstruction/etiology , Ventricular Outflow Obstruction/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...