Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Neurotrauma ; 38(17): 2454-2472, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33843262

ABSTRACT

Loss of plasmalemmal integrity may mediate cell death after traumatic brain injury (TBI). Prior studies in controlled cortical impact (CCI) indicated that the membrane resealing agent Kollidon VA64 improved histopathological and functional outcomes. Kollidon VA64 was therefore selected as the seventh therapy tested by the Operation Brain Trauma Therapy consortium, across three pre-clinical TBI rat models: parasagittal fluid percussion injury (FPI), CCI, and penetrating ballistic-like brain injury (PBBI). In each model, rats were randomized to one of four exposures (7-15/group): (1) sham; (2) TBI+vehicle; (3) TBI+Kollidon VA64 low-dose (0.4 g/kg); and (4) TBI+Kollidon VA64 high-dose (0.8 g/kg). A single intravenous VA64 bolus was given 15 min post-injury. Behavioral, histopathological, and serum biomarker outcomes were assessed over 21 days generating a 22-point scoring matrix per model. In FPI, low-dose VA64 produced zero points across behavior and histopathology. High-dose VA64 worsened motor performance compared with TBI-vehicle, producing -2.5 points. In CCI, low-dose VA64 produced intermediate benefit on beam balance and the Morris water maze (MWM), generating +3.5 points, whereas high-dose VA64 showed no effects on behavior or histopathology. In PBBI, neither dose altered behavior or histopathology. Regarding biomarkers, significant increases in glial fibrillary acidic protein (GFAP) levels were seen in TBI versus sham at 4 h and 24 h across models. Benefit of low-dose VA64 on GFAP was seen at 24 h only in FPI. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) was increased in TBI compared with vehicle across models at 4 h but not at 24 h, without treatment effects. Overall, low dose VA64 generated +4.5 points (+3.5 in CCI) whereas high dose generated -2.0 points. The modest/inconsistent benefit observed reduced enthusiasm to pursue further testing.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Pyrrolidines/therapeutic use , Vinyl Compounds/therapeutic use , Animals , Behavior, Animal , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Male , Rats , Rats, Sprague-Dawley , Recovery of Function
2.
Front Neurol ; 11: 91, 2020.
Article in English | MEDLINE | ID: mdl-32174881

ABSTRACT

Blast exposure is common in military personnel during training and combat operations, yet biological mechanisms related to cell survival and function that coordinate recovery remain poorly understood. This study explored how moderate blast exposure influences gene expression; specifically, gene-network changes following moderate blast exposure. On day 1 (baseline) of a 10-day military training program, blood samples were drawn, and health and demographic information collected. Helmets equipped with bilateral sensors worn throughout training measured overpressure in pounds per square inch (psi). On day 7, some participants experienced moderate blast exposure (peak pressure ≥5 psi). On day 10, 3 days post-exposure, blood was collected and compared to baseline with RNA-sequencing to establish gene expression changes. Based on dysregulation data from RNA-sequencing, followed by top gene networks identified with Ingenuity Pathway Analysis, a subset of genes was validated (NanoString). Five gene networks were dysregulated; specifically, two highly significant networks: (1) Cell Death and Survival (score: 42), including 70 genes, with 50 downregulated and (2) Cell Structure, Function, and Metabolism (score: 41), including 69 genes, with 41 downregulated. Genes related to ubiquitination, including neuronal development and repair: UPF1, RNA Helicase and ATPase (UPF1) was upregulated while UPF3 Regulator of Nonsense Transcripts Homolog B (UPF3B) was downregulated. Genes related to inflammation were upregulated, including AKT serine/threonine kinase 1 (AKT1), a gene coordinating cellular recovery following TBIs. Moderate blast exposure induced significant gene expression changes including gene networks involved in (1) cell death and survival and (2) cellular development and function. The present findings may have implications for understanding blast exposure pathology and subsequent recovery efforts.

3.
Brain Inj ; 33(10): 1364-1371, 2019.
Article in English | MEDLINE | ID: mdl-31305157

ABSTRACT

Primary objective: Examine the correlation between acute cerebrospinal fluid (CSF) levels of N-acetylaspartate (NAA) and injury severity upon admission in addition to long-term functional outcomes of severe traumatic brain injury (TBI). Design and rationale: This exploratory study assessed CSF NAA levels in the first four days after severe TBI, and correlated these findings with Glasgow Coma Scale (GCS) score and long-term outcomes at 3, 6, 12, and 24 months post-injury. Methods: CSF was collected after passive drainage via an indwelling ventriculostomy placed as standard of care in a total of 28 people with severe TBI. NAA levels were assayed using triple quadrupole mass spectrometry. Functional outcomes were assessed using the Glasgow Outcomes Scale (GOS) and Disability Rating Scale (DRS). Results: In this pilot study, better functional outcomes, assessed using the GOS and DRS, were found in individuals with lower acute CSF NAA levels after TBI. Key findings were that average NAA level was associated with GCS (p = .02), and GOS at 3 (p = .01), 6 (p = .04), 12 (p = .007), and 24 months (p = .002). Implications: The results of this study add to a growing body of neuroimaging evidence that raw NAA values are reduced and variable after TBI, potentially impacting patient outcomes, warranting additional exploration into this finding. This line of inquiry could lead to improved diagnosis and prognosis in patients with TBI.


Subject(s)
Aspartic Acid/analogs & derivatives , Brain Injuries, Traumatic/cerebrospinal fluid , Adolescent , Adult , Aged , Aspartic Acid/cerebrospinal fluid , Disability Evaluation , Female , Glasgow Coma Scale , Glasgow Outcome Scale , Humans , Male , Middle Aged , Pilot Projects , Predictive Value of Tests , Prognosis , Prospective Studies , Treatment Outcome , Ventriculostomy , Young Adult
4.
Brain Behav Immun ; 80: 904-908, 2019 08.
Article in English | MEDLINE | ID: mdl-31039430

ABSTRACT

Posttraumatic stress disorder (PTSD) is associated with wide-spread immune dysregulation; however, little is known about the gene expression differences attributed to each PTSD symptom cluster. This is an important consideration when identifying diagnostic and treatment response markers in highly comorbid populations with mental and physical health conditions that share symptoms. To this aim, we utilized a transcriptome-wide analysis of differential gene expression in peripheral blood by comparing military service members: (1) with vs. without PTSD, (2) with high vs. low PTSD cluster symptom severity, and (3) with improved vs. not improved PTSD symptoms following 4-8 weeks of evidenced-based sleep treatment. Data were analyzed at a ±2.0-fold change magnitude with subsequent gene ontology-based pathway analysis. In participants with PTSD (n = 39), 89 differentially expressed genes were identified, and 94% were upregulated. In participants with high intrusion symptoms (n = 22), 1040 differentially expressed genes were identified, and 98% were upregulated. No differentially expressed genes were identified for the remaining two PTSD symptom clusters. Ten genes (C5orf24, RBAK, CREBZF, CD69, PMAIP1, AGL, ZNF644, ANKRD13C, ESCO1, and ZCCHC10) were upregulated in participants with PTSD and high intrusion symptoms at baseline and downregulated in participants with improved PTSD symptoms following treatment. Pathway analysis identified upregulated immune response systems and metabolic networks with a NF-kB hub, which were downregulated with symptom reduction. Molecular biomarkers implicated in intrusion symptoms and PTSD symptom improvement may inform the development of therapeutic targets for precise treatment of PTSD.


Subject(s)
Behavioral Symptoms/genetics , Stress Disorders, Post-Traumatic/genetics , Transcriptome/genetics , Acetyltransferases , Adult , Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Basic-Leucine Zipper Transcription Factors , Cluster Analysis , Extracellular Matrix Proteins , Female , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Lectins, C-Type , Male , Membrane Proteins , Military Personnel , Molecular Chaperones , Phosphoproteins , Proto-Oncogene Proteins c-bcl-2 , Repressor Proteins , Stress Disorders, Post-Traumatic/classification , Stress Disorders, Post-Traumatic/diagnosis , Transcription Factors
5.
J Neurotrauma ; 35(22): 2684-2690, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29969943

ABSTRACT

Diagnostic and prognostic biomarkers of traumatic brain injury (TBI) are actively being pursued; potential candidates include glial fibrillary acid protein (GFAP), S100 calcium-binding protein B (S100B), and ubiquitin C-terminal hydrolase L1 (UCHL1), two of which the United States Food and Drug Administration (FDA) recently approved for marketing of blood tests for adult concussion. The relationship between biomarker-encoding genes and TBI outcomes remains unknown. This pilot study explores variation in 18 single nucleotide polymorphisms (SNPs) in biomarker-encoding genes as predictors of neurological outcome in a population of adults with severe TBI. Participants (n = 305) were assessed using the Glasgow Outcome Scale (GOS) at 3, 6, 12, and 24 months post-injury. Multivariate logistical regression was used to calculate the odds ratio (OR) and determine the odds of having a lower score on the GOS ( = 1-2 vs. 3-5) based on variant allele presence, while controlling for confounders. Possession of the variant allele of one S100B SNP (rs1051169) was associated with higher scores on the GOS at 3 months (OR = 0.39; p = 0.04), 6 months (OR = 0.34; p = 0.02), 12 months (OR = 0.32; p = 0.02), and 24 months (OR = 0.30; p = 0.02) post-severe TBI. The relationship among these polymorphisms, protein levels, and biomarker utility, merits examination. These findings represent a novel contribution to the evidence that can inform future studies aimed at enhancing interpretation of biomarker data, identifying novel biomarkers, and ultimately harnessing this information to improve clinical outcomes and personalize care.


Subject(s)
Brain Injuries, Traumatic , Genetic Markers/genetics , Recovery of Function/genetics , S100 Calcium Binding Protein beta Subunit/genetics , Adolescent , Adult , Aged , Female , Glasgow Outcome Scale , Glial Fibrillary Acidic Protein/genetics , Humans , Male , Middle Aged , Pilot Projects , Polymorphism, Single Nucleotide , Ubiquitin Thiolesterase/genetics , Young Adult
6.
Neurosci Lett ; 650: 18-24, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28377323

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a devastating and costly acquired condition that affects individuals of all ages, races, and geographies via a number of mechanisms. The effects of TBI on melatonin receptors remain unknown. PURPOSE: The purpose of this study is to explore whether endogenous changes in two melatonin receptor subtypes (MT1 and MT2) occur after experimental TBI. SAMPLE: A total of 25 adult male Sprague Dawley rats were used with 6 or 7 rats per group. METHODS: Rats were randomly assigned to receive either TBI modeled using controlled cortical impact or sham surgery and to be sacrificed at either 6- or 24-h post-operatively. Brains were harvested, dissected, and flash frozen until whole cell lysates were prepared, and the supernatant fluid aliquoted and used for western blotting. Primary antibodies were used to probe for melatonin receptors (MT1 and MT2), and beta actin, used for a loading control. ImageJ and Image Lab software were used to quantify the data which was analyzed using t-tests to compare means. RESULTS: Melatonin receptor levels were reduced in a brain region- and time point- dependent manner. Both MT1 and MT2 were reduced in the frontal cortex at 24h and in the hippocampus at both 6h and 24h. DISCUSSION: MT1 and MT2 are less abundant after injury, which may alter response to MEL therapy. Studies characterizing MT1 and MT2 after TBI are needed, including exploration of the time course and regional patterns, replication in diverse samples, and use of additional variables, especially sleep-related outcomes. CONCLUSION: TBI in rats resulted in lower levels of MT1 and MT2; replication of these findings is necessary as is evaluation of the consequences of lower receptor levels.


Subject(s)
Brain Injuries, Traumatic/metabolism , Frontal Lobe/metabolism , Hippocampus/metabolism , Receptor, Melatonin, MT1/metabolism , Receptor, Melatonin, MT2/metabolism , Animals , Brain Injuries, Traumatic/pathology , Down-Regulation , Frontal Lobe/injuries , Frontal Lobe/pathology , Hippocampus/injuries , Hippocampus/pathology , Male , Rats , Rats, Sprague-Dawley , Tissue Distribution
7.
J Neurotrauma ; 34(1): 86-96, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27225880

ABSTRACT

After experimental traumatic brain injury (TBI), calcineurin is upregulated; blocking calcineurin is associated with improved outcomes. In humans, variation in the calcineurin A-gamma gene (PPP3CC) has been associated with neuropsychiatric disorders, though any role in TBI recovery remains unknown. This study examines associations between PPP3CC genotype and mortality, as well as gross functional status assessed at admission using the Glasgow Coma Scale (GCS) and at 3, 6, and 12 months after severe TBI using the Glasgow Outcome Score (GOS). The following tagging single nucleotide polymorphisms (tSNPs) in PPP3CC were genotyped: rs2443504, rs2461491, rs2469749, and rs10108011. The rs2443504 AA genotype was univariately associated with GCS (p = 0.022), GOS at 3, 6, and 12 months (p = 0.002, p = 0.034, and p = 0.004, respectively), and mortality (p = 0.007). In multivariate analysis controlling for age, sex, and GCS, the AA genotype of rs2443504 was associated with GOS at 3 (p = 0.02), and 12 months (p = 0.01), with a trend toward significance at 6 months (p = 0.05); the AA genotype also was associated with mortality in the multivariate model (p = 0.04). Further work is warranted to better understand the role of calcineurin, as well as the genes encoding it and their relevance to outcomes after brain injury.


Subject(s)
Brain Injuries/genetics , Calcineurin/genetics , Genetic Variation/genetics , Genotype , Recovery of Function/genetics , Severity of Illness Index , Adolescent , Adult , Aged , Brain Injuries/diagnosis , Brain Injuries/physiopathology , Female , Glasgow Outcome Scale/trends , Humans , Male , Middle Aged , Pilot Projects , Polymorphism, Single Nucleotide/genetics , Time Factors , Young Adult
8.
Biol Res Nurs ; 19(1): 18-27, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27613438

ABSTRACT

Omics approaches, including genomics, transcriptomics, proteomics, epigenomics, microbiomics, and metabolomics, generate large data sets. Once they have been used to address initial study aims, these large data sets are extremely valuable to the greater research community for ancillary investigations. Repurposing available omics data sets provides data to address research questions, generate and test hypotheses, replicate findings, and conduct mega-analyses. Many well-characterized, longitudinal, epidemiological studies collected extensive phenotype data related to symptom occurrence and severity. While the main phenotype of interest for many of these studies was often not symptom related, these data were collected to better understand the primary phenotype of interest. A search for symptom data (i.e., cognitive impairment, fatigue, gastrointestinal distress/nausea, sleep, and pain) in the database of genotypes and phenotypes (dbGaP) revealed many studies that collected symptom and omics data. There is thus a real possibility for nurse scientists to be able to look at symptom data over time from thousands of individuals and use omics data to identify key biological underpinnings that account for the development and severity of symptoms without recruiting participants or generating any new data. The purpose of this article is to introduce the reader to resources that provide omics data to the research community for repurposing, provide guidance on using these databases, and encourage the use of these data to move symptom science forward.

9.
Appl Nurs Res ; 32: 247-256, 2016 11.
Article in English | MEDLINE | ID: mdl-27969037

ABSTRACT

Animal research has been conducted by scientists for over two millennia resulting in a better understanding of human anatomy, physiology, and pathology, as well as testing of novel therapies. In the molecular genomic era, pre-clinical models represent a key tool for understanding the genomic underpinnings of health and disease and are relevant to precision medicine initiatives. Nurses contribute to improved health by collecting and translating evidence from clinically relevant pre-clinical models. Using animal models, nurses can ask questions that would not be feasible or ethical to address in humans, and establish the safety and efficacy of interventions before translating them to clinical trials. Two advantages of using pre-clinical models are reduced variability between test subjects and the opportunity for precisely controlled experimental exposures. Standardized care controls the effects of diet and environment, while the availability of inbred strains significantly reduces the confounding effects of genetic differences. Outside the laboratory, nurses can contribute to the approval and oversight of animal studies, as well as translation to clinical trials and, ultimately, patient care. This review is intended as a primer on the use of animal models to advance nursing science; specifically, the paper discusses the utility of preclinical models for studying the pathophysiologic and genomic contributors to health and disease, testing interventions, and evaluating effects of environmental exposures. Considerations specifically geared to nurse researchers are also introduced, including discussion of how to choose an appropriate model and controls, potential confounders, as well as legal and ethical concerns. Finally, roles for nurse clinicians in pre-clinical research are also highlighted.


Subject(s)
Genomics , Models, Animal , Nurse's Role , Animals , Research
10.
Front Neurol ; 7: 134, 2016.
Article in English | MEDLINE | ID: mdl-27582726

ABSTRACT

Controlled cortical impact (CCI) is a mechanical model of traumatic brain injury (TBI) that was developed nearly 30 years ago with the goal of creating a testing platform to determine the biomechanical properties of brain tissue exposed to direct mechanical deformation. Initially used to model TBIs produced by automotive crashes, the CCI model rapidly transformed into a standardized technique to study TBI mechanisms and evaluate therapies. CCI is most commonly produced using a device that rapidly accelerates a rod to impact the surgically exposed cortical dural surface. The tip of the rod can be varied in size and geometry to accommodate scalability to difference species. Typically, the rod is actuated by a pneumatic piston or electromagnetic actuator. With some limits, CCI devices can control the velocity, depth, duration, and site of impact. The CCI model produces morphologic and cerebrovascular injury responses that resemble certain aspects of human TBI. Commonly observed are graded histologic and axonal derangements, disruption of the blood-brain barrier, subdural and intra-parenchymal hematoma, edema, inflammation, and alterations in cerebral blood flow. The CCI model also produces neurobehavioral and cognitive impairments similar to those observed clinically. In contrast to other TBI models, the CCI device induces a significantly pronounced cortical contusion, but is limited in the extent to which it models the diffuse effects of TBI; a related limitation is that not all clinical TBI cases are characterized by a contusion. Another perceived limitation is that a non-clinically relevant craniotomy is performed. Biomechanically, this is irrelevant at the tissue level. However, craniotomies are not atraumatic and the effects of surgery should be controlled by including surgical sham control groups. CCI devices have also been successfully used to impact closed skulls to study mild and repetitive TBI. Future directions for CCI research surround continued refinements to the model through technical improvements in the devices (e.g., minimizing mechanical sources of variation). Like all TBI models, publications should report key injury parameters as outlined in the NIH common data elements (CDEs) for pre-clinical TBI.

11.
Brain Res ; 1640(Pt A): 15-35, 2016 06 01.
Article in English | MEDLINE | ID: mdl-26711850

ABSTRACT

Among the many pathophysiologic consequences of traumatic brain injury are changes in catecholamines, including dopamine, epinephrine, and norepinephrine. In the context of TBI, dopamine is the one most extensively studied, though some research exploring epinephrine and norepinephrine have also been published. The purpose of this review is to summarize the evidence surrounding use of drugs that target the catecholaminergic system on pathophysiological and functional outcomes of TBI using published evidence from pre-clinical and clinical brain injury studies. Evidence of the effects of specific drugs that target catecholamines as agonists or antagonists will be discussed. Taken together, available evidence suggests that therapies targeting the catecholaminergic system may attenuate functional deficits after TBI. Notably, it is fairly common for TBI patients to be treated with catecholamine agonists for either physiological symptoms of TBI (e.g. altered cerebral perfusion pressures) or a co-occuring condition (e.g. shock), or cognitive symptoms (e.g. attentional and arousal deficits). Previous clinical trials are limited by methodological limitations, failure to replicate findings, challenges translating therapies to clinical practice, the complexity or lack of specificity of catecholamine receptors, as well as potentially counfounding effects of personal and genetic factors. Overall, there is a need for additional research evidence, along with a need for systematic dissemination of important study details and results as outlined in the common data elements published by the National Institute of Neurological Diseases and Stroke. Ultimately, a better understanding of catecholamines in the context of TBI may lead to therapeutic advancements. This article is part of a Special Issue entitled SI:Brain injury and recovery.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Catecholamines/metabolism , Neurotransmitter Agents/therapeutic use , Recovery of Function/drug effects , Recovery of Function/physiology , Animals , Humans , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neurotransmitter Agents/pharmacology , Receptors, Catecholamine/agonists , Receptors, Catecholamine/antagonists & inhibitors , Receptors, Catecholamine/metabolism
12.
J Neurotrauma ; 32(23): 1861-82, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-25490251

ABSTRACT

The purpose of this review is to survey the use of experimental animal models for studying the chronic histopathological and behavioral consequences of traumatic brain injury (TBI). The strategies employed to study the long-term consequences of TBI are described, along with a summary of the evidence available to date from common experimental TBI models: fluid percussion injury; controlled cortical impact; blast TBI; and closed-head injury. For each model, evidence is organized according to outcome. Histopathological outcomes included are gross changes in morphology/histology, ventricular enlargement, gray/white matter shrinkage, axonal injury, cerebrovascular histopathology, inflammation, and neurogenesis. Behavioral outcomes included are overall neurological function, motor function, cognitive function, frontal lobe function, and stress-related outcomes. A brief discussion is provided comparing the most common experimental models of TBI and highlighting the utility of each model in understanding specific aspects of TBI pathology. The majority of experimental TBI studies collect data in the acute postinjury period, but few continue into the chronic period. Available evidence from long-term studies suggests that many of the experimental TBI models can lead to progressive changes in histopathology and behavior. The studies described in this review contribute to our understanding of chronic TBI pathology.


Subject(s)
Brain Injury, Chronic/pathology , Disease Models, Animal , Animals , Male
13.
Neurosci Biobehav Rev ; 58: 123-46, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25496906

ABSTRACT

The aim of this review is to discuss in greater detail the topics covered in the recent symposium entitled "Traumatic brain injury: laboratory and clinical perspectives," presented at the 2014 International Behavioral Neuroscience Society annual meeting. Herein, we review contemporary laboratory models of traumatic brain injury (TBI) including common assays for sensorimotor and cognitive behavior. New modalities to evaluate social behavior after injury to the developing brain, as well as the attentional set-shifting test (AST) as a measure of executive function in TBI, will be highlighted. Environmental enrichment (EE) will be discussed as a preclinical model of neurorehabilitation, and finally, an evidence-based approach to sports-related concussion will be considered. The review consists predominantly of published data, but some discussion of ongoing or future directions is provided.


Subject(s)
Biology , Brain Injuries/physiopathology , Brain Injuries/psychology , Translational Research, Biomedical , Animals , Disease Models, Animal , Environment , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...