Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Poult Sci ; 102(12): 103108, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37862868

ABSTRACT

Escherichia coli is an important zoonotic bacterium that significantly impacts one health concept. E. coli is normally detected in the gut of warm-blooded animals, but some serotypes can cause diseases in humans and animals. Moreover, it can continue for a long time in different environments, replicate in water, and survive outside different hosts. In this study, 171 samples collected from 10 different types of poultry hatcheries (automatic, semiautomatic, and manual "traditional" types) were examined for the prevalence of E. coli. PCR was applied to verify the E. coli isolates via 16S rRNA gene-specific primers. From the gathered samples, 62 E. coli isolates were recovered (36.3%). The highest prevalence was met with the manual "traditional" hatcheries (57.1%) with no significance difference (P = 0.243) in the 3 types of hatcheries. The incidence of E. coli varied significantly in different tested avian types and breeds. The prevalence was 35.7% in duck hatcheries and 37% in chicken hatcheries, with significant differences between breeds of both species (P = 0.024 and 0.001, respectively). The identification of zoonotic E. coli serotypes in this study is concerning, highlighting the need for collaborative efforts across various sectors, including social, environmental, and governance, to promote the adoption of the one health principle in the chicken business. Periodical surveillance, biosecurity measures at the hatcheries and farm levels, and boosting the immunity of birds were recommended to limit the risk of E. coli spread from avian sources to humans.


Subject(s)
Escherichia coli Infections , One Health , Poultry Diseases , Humans , Animals , Escherichia coli/genetics , Chickens/genetics , Ducks/genetics , RNA, Ribosomal, 16S , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Anti-Bacterial Agents
2.
Acta Trop ; 207: 105500, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32330451

ABSTRACT

In the scientific literature, a small amount of information is found concerning mycoplasmosis in camel species. A variety of pathogens could be causative agents for pneumonia, but walking pneumonia is mostly caused by Mycoplasma with slow development and mild symptoms. The aim of this study was to identify mycoplasmas from camels (Camelus dromedarius) and extending the arsenal of factors implicated in pathogenicity of M. arginini to shed light on the current knowledge gap. 460 lung samples (pneumonic; n=210 and apparently healthy; n=250) were randomly collected from the one-humped camels (C. domedarius) that have been imported from Sudan and slaughtered at Cairo Slaughterhouse. 48 out of 210 isolates (22.9%) recovered from the pneumonic lungs were recorded as M. arginini. Positive PCR results were obtained for all 48 isolates. On the other hand, infection with the organism was not detected in the apparently healthy lungs. Hemolysis and hydrogen sulphide (H2S) production, a compound that has previously not been identified as a virulence factor in M. arginini, was evident in 100% of the isolates. The 48 M. arginini isolates were weak in their ability to form biofilm on polystyrene surfaces. All isolates were 100% susceptible to florfenicol and streptomycin and 100% resistant to ciprofloxacin. Resistance to lincomycin, spiromycin, tylosin, doxacyclin and erythromycin was observed at different frequencies. 13 different combinations of antibiotics representing one to four classes were evident with the Macrolide erythromycin being the most represented. It also should be noted that the ciprofloxacin, doxacyclin, lincomycin, erythromycin combination was the most noted in 21/48 isolates. Surprisingly, none of the virulence genes (vsp, uvrC and gapA) and quinolone resistance genes (parC and gyrA) were detected by PCR.


Subject(s)
Camelus/microbiology , Mycoplasma/isolation & purification , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Mycoplasma/drug effects , Mycoplasma/genetics , Mycoplasma/pathogenicity , Phylogeny , Virulence/genetics
3.
Microb Drug Resist ; 26(5): 520-530, 2020 May.
Article in English | MEDLINE | ID: mdl-31750778

ABSTRACT

Staphylococcal food poisoning is considered to be one of the most common foodborne illnesses worldwide. Because milk is rich in nutrients and its neutral pH, it leads to the growth of various bacteria. To date, the correlation between enterotoxigenic potential in Staphylococcus species and antimicrobial resistance (AMR), using bioinformatics analysis in buffalo and cow raw milk and the possible health risks from these bacteria, has not been examined in Egypt. A total of 42 Staphylococcus isolates representing 12 coagulase-positive staphylococci (Staphylococcus aureus and Staphylococcus intermedius) and 30 coagulase-negative staphylococci (Staphylococcus capitis, Staphylococcus xylosus, Staphylococcus carnosus, Staphylococcus saccharolyticus, and Staphylococcus auricularis) were isolated. An assay of the antimicrobial resistance phenotypes indicated low resistance against vancomycin (9.5%). The blaZ gene was associated with penicillin G and methicillin resistance and not with sulbactam + ampicillin. The presence of the gene ermB presented the correlation with erythromycin resistance and tetK with tetracycline resistance (correlation index: 0.57 and 0.49, respectively), despite the absence of the same behavior for ermC and tetM, respectively. Interestingly, the gene mecA was not correlated with resistance to methicillin or any other ß-lactam. Correlation showed that slime-producing isolates had more resistance to antibiotics than those of nonslime producers. The multiple correlations between antibiotic resistance phenotypes and resistance genes indicate a complex nature of resistance in Staphylococcus species. The antimicrobial resistance could potentially spread to the community and thus, the resistance of Staphylococcus species to various antibiotics does not depend only on the use of a single antimicrobial, but also extends to other unrelated classes of antimicrobials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Coagulase/biosynthesis , Drug Resistance, Bacterial/genetics , Milk/microbiology , Staphylococcus/genetics , beta-Lactamases/genetics , Animals , Buffaloes , Cattle , Computational Biology , Drug Resistance, Bacterial/drug effects , Egypt , Hemolysin Proteins/biosynthesis , Microbial Sensitivity Tests , Staphylococcus/drug effects , Staphylococcus/isolation & purification
4.
Acta Trop ; 202: 105281, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31759920

ABSTRACT

This study evaluated plant-based immune-adjuvants from crude extracts of Phoenix dactylifera and Mentha piperita as promising adjuvants for vaccines because of the limited side effects associated with plant extracts. In addition, Montanide™ ISA 201 previously used in vaccines in cattle. Eight different infectious coryza (IC) vaccines were prepared from three serovars [A (W strain and local strain), C (Modesto strain) and B (0222 strain)] with eight Avibacterium paragallinarum vaccines adjuvants formulae using liquid paraffin, Montanide™ ISA 71, Montanide™ ISA 201, and Montanide™ Gel adjuvants, P. dactylifera and M. piperita as immune-stimulants at a concentration of 1 mg and 2 mg incorporated with or without liquid paraffin oil as an adjuvant. These vaccines were applied in a chicken model. After a single immunization, the eight vaccine formulations were evaluated using the ELISA and Microplate agglutination test. Evidence of protection in the immunized birds was based on the results after challenge and bacterial isolation. The incorporation of the crude aqueous extract of P. dactylifera or M. piperita at a concentration of 2 mg in a liquid paraffin oil adjuvanted IC vaccine could be employed as an efficient adjuvant for chicken to IC vaccine to enhance immune responses. Also,Montanide™ ISA 201 may be the best adjuvant to be used to enhance the protective response against Av. paragallinarum. Our results confirm that aqueous extracts of M. piperita leaves and P. dactylifera fruit have immunomodulatory potentials in vivo and elevated serum antibodies against Av. Paragallinarum.


Subject(s)
Adjuvants, Immunologic , Bacterial Vaccines/immunology , Chickens , Mannitol/analogs & derivatives , Mentha piperita , Oleic Acids , Phoeniceae , Poultry Diseases/prevention & control , Animals , Antibodies, Bacterial/blood , Immunization , Mannitol/pharmacology , Oleic Acids/pharmacology , Pasteurellaceae/immunology , Vaccination/veterinary
5.
Pathogens ; 9(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861483

ABSTRACT

Serious outbreaks of foodborne disease have been caused by Listeria monocytogenes found in retail delicatessens and the severity of disease is significant, with high hospitalization and mortality rates. Little is understood about the formidable public health threat of L. monocytogenes in all four niches, humans, animals, food, and environment, in Egypt. This study analyzed the presence of L. monocytogenes collected from the four environmental niches and bioinformatics analysis was implemented to analyze and compare the data. PCR was used to detect virulence genes encoded by pathogenicity island (LIPI-1). prfA amino acid substation that causes constitutive expression of virulence was common in 77.7% of isolates. BLAST analysis did not match other isolates in the NCBI database, suggesting this may be a characteristic of the region associated with these isolates. A second group included the NH1 isolate originating in China, and BLAST analysis showed this prfA allele was shared with isolates from other global locations, such as Europe and North America. Identification of possible links and transmission pathways between the four niches helps to decrease the risk of disease in humans, to take more specific control measures in the context of disease prevention, to limit economic losses associated with food recalls, and highlights the need for treatment options.

6.
Microb Pathog ; 128: 195-205, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30615998

ABSTRACT

Although commonly regarded as human and animal intestinal tract commensals, Enterococcus spp. have emerged as important nosocomial pathogens due to their intrinsic or acquired resistance to a number of antibiotics. Poultry has been suggested to be a reservoir for antibiotic resistance that may aggravate the problem of transmission of enterococci infections. Between January and December 2016, 106 Enterococcus spp. were isolated from a total of three poultry species. The collection included isolates recovered from chickens (n = 30), ducks (n = 35) and pigeons (n = 41). All enterococci isolates were screened for their ability to form biofilm. The antibiotic susceptibility was determined against 13 antibiotics using the disc diffusion method. The presence of the eight resistance genes, vanA, vanB, vanC, catA, catB, fexA, fexB and cfr was determined by PCR. All 106 isolates were resistant to clindamycin, whereas majority of isolates (>90%) were resistant to erythromycin, oxytetracycline, doxycycline, gentamycin, ciprofloxacin, norfloxacin, and vancomycin. All isolates produced biofilms and were classified as extensive drug-resistant. MARindices for all isolates was determined to be > 0.8, indicating that they have been recovered from high risk contamination sources. The cfr resistance gene was not detected in any of the 106 enterococci isolates, whereas the chloramphenicol resistance genes catA and catB were found in 18.9% (20/106) of the isolates. Interestengly, fexA 11.9% (15/106), fexB 8.7% (11/106), vanA 18.9% (20/106), vanB 25.5% (27/106), and vanC 33% (35/106) genes were also determined in our study. The present study highlights the emergence of a linezolid sensitive-vancomycin resistant enterococci, which lacks the cfr gene reporting also for the first time the detection of van, fex and cat -genes in Enterococcus species recovered from chickens, ducks and pigeons in Egypt suggesting that poultry species could be potential vectors for transmission of multidrug resistant enterococci posing a public health risk.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus/drug effects , Enterococcus/genetics , Feces/microbiology , Animals , Biofilms/growth & development , Chloramphenicol/pharmacology , Columbidae/microbiology , Disease Reservoirs/microbiology , Disk Diffusion Antimicrobial Tests , Ducks/microbiology , Egypt , Enterococcus/isolation & purification , Enterococcus/pathogenicity , Gene Expression Regulation, Bacterial , Humans , Linezolid/pharmacology , Poultry/microbiology , Public Health , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacology , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/genetics
7.
Sci Rep ; 8(1): 11600, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30072706

ABSTRACT

Although Bacillus cereus is of particular concern in food safety and public health, the role of other Bacillus species was overlooked. Therefore, we investigated the presence of eight enterotoxigenic genes, a hemolytic gene and phenotypic antibiotic resistance profiles of Bacillus species in retail meat samples. From 255 samples, 124 Bacillus isolates were recovered, 27 belonged to B. cereus and 97 were non-B. cereus species. Interestingly, the non-B. cereus isolates carried the virulence genes and exhibited phenotypic virulence characteristics as the B. cereus. However, correlation matrix analysis revealed the B. cereus group positively correlates with the presence of the genes hblA, hblC, and plc, and the detection of hemolysis (p < 0.05), while the other Bacillus sp. groups are negatively correlated. Tests for antimicrobial resistance against ten antibiotics revealed extensive drug and multi-drug resistant isolates. Statistical analyses didn't support a correlation of antibiotic resistance to tested virulence factors suggesting independence of these phenotypic markers and virulence genes. Of special interest was the isolation of Paenibacillus alvei and Geobacillus stearothermophilus from the imported meat samples being the first recorded. The isolation of non-B. cereus species carrying enterotoxigenic genes in meat within Egypt, suggests their impact on food safety and public health and should therefore not be minimised, posing an area that requires further research.


Subject(s)
Bacillus cereus , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Food Microbiology , Meat/microbiology , Poultry Products/microbiology , Virulence Factors/genetics , Bacillus cereus/genetics , Bacillus cereus/isolation & purification , Bacillus cereus/pathogenicity , Paenibacillus/genetics , Paenibacillus/isolation & purification
8.
Future Microbiol ; 13: 757-769, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29848056

ABSTRACT

AIM: Participants in an unorganized gathering are potential hosts of diseases, bringing diseases from around the world to be introduced to a large at-risk population. Therefore, we investigated the gene repertoire in 29 Escherichia coli strains linked to urinary tract infection isolated from patients transferred to the hospital after attending an unorganized gathering in Cairo. MATERIALS & METHODS: Virulence and resistance determinants, phenotypic antibiotic resistance, biofilm formation, their serotypes and phylogenetic relationships were analyzed. RESULTS: The 29 tested serovars were phenotypically virulent, with the prevalence of group B2, and resistant to tetracycline, naldixic acid, ampicillin, trimethoprim, neomycin, oxytetracycline and erythromycin encoding the iss virulent gene. CONCLUSION: A One Health approach is a must to monitor and control E. coli urinary tract infections.


Subject(s)
Escherichia coli Infections/microbiology , Escherichia coli/isolation & purification , Urinary Tract Infections/microbiology , Adult , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Escherichia coli/classification , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Infections/transmission , Female , Humans , Male , Urinary Tract Infections/transmission , Virulence Factors/genetics , Virulence Factors/metabolism , Young Adult
9.
Sci Rep ; 8(1): 5859, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29643424

ABSTRACT

Hatcheries have the power to spread antimicrobial resistant (AMR) pathogens through the poultry value chain because of their central position in the poultry production chain. Currently, no information is available about the presence of AMR Escherichia coli strains and the antibiotic resistance genes (ARGs) they harbor within hatchezries. Therefore, this study aimed to investigate the possible involvement of hatcheries in harboring hemolytic AMR E. coli. Serotyping of the 65 isolated hemolytic E. coli revealed 15 serotypes with the ability to produce moderate biofilms, and shared susceptibility to cephradine and fosfomycin and resistance to spectinomycin. The most common ß-lactam resistance gene was blaTEM, followed by blaOXA-1, blaMOX-like, blaCIT-like, blaSHV and blaFOX. Hierarchical clustering of E. coli isolates based on their phenotypic and genotypic profiles revealed separation of the majority of isolates from hatchlings and the hatchery environments, suggesting that hatchling and environmental isolates may have different origins. The high frequency of ß-lactam resistance genes in AMR E. coli from chick hatchlings indicates that hatcheries may be a reservoir of AMR E. coli and can be a major contributor to the increased environmental burden of ARGs posing an eminent threat to poultry and human health.


Subject(s)
Chickens/microbiology , Disease Reservoirs/veterinary , Escherichia coli Infections/transmission , Escherichia coli/physiology , Poultry Diseases/drug therapy , Animal Husbandry , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/adverse effects , Biofilms/drug effects , Disease Reservoirs/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Food Contamination , Food Microbiology , Food Safety , Humans , Microbial Sensitivity Tests , Poultry Diseases/microbiology , Serotyping/methods , beta-Lactam Resistance/drug effects , beta-Lactam Resistance/genetics , beta-Lactamases/genetics
10.
Saudi J Biol Sci ; 25(2): 195-197, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29472764

ABSTRACT

Escherichia coli is a recognized zoonotic food-borne pathogen; however, the use of polymerase chain reaction (PCR) in the underdeveloped countries to differentiate pathogenic from non-pathogenic E. coli is a problematic issue. Our grail was to assess the phenotypic virulence markers motility, hemolysin, congo red agar, embryo lethality assay and serum resistance for pathogenic E. coli (PEC) correlated to PCR tests which is currently used world-wide to evaluate the PEC. The 448 strains of Escherichia coli that were isolated from different sources, were characterized for phenotypic virulence factors such as motility, hemolysin, Congo red binding, Embryo Lethality assay (ELA) and serum resistance, as well as antibiotic susceptibility using disc diffusion method to 23 antibiotics. Results exhibited 100% motility and Congo red binding, 97.1% for hemolysin production and 90.2% in the ELA. As a result, we were able to hypothetically conclude that the aforementioned virulence markers are plain, straightforward, economical, rapid, more dynamic, uncomplicated methodology, duplicatable and cost next to nothing when compared to the molecular PCR. Their implementation in a diagnostic microbiology laboratory for vetting is a rewarding task in the underdeveloped countries. It augments endeavors to minimize the use of PCR in our investigations especially during epidemiological and outbreak investigations of PEC.

11.
BMC Vet Res ; 13(1): 357, 2017 Nov 25.
Article in English | MEDLINE | ID: mdl-29178882

ABSTRACT

BACKGROUND: The present investigation was an endeavor into the elucidation of the disease-causing pathogen of streptococcosis in Nile tilapia (Oreochromis niloticus) in Egypt affecting adult fish cultured and wild fish in the Nile river. Fish were obtained from commercial fishermen, collected as part of their routine fishing activities. The researchers observed the routine fishing process and selected fish for use in the study, at the point of purchase from the fisherman. RESULTS: Diseased fish showed exophthalmia with accumulation of purulent and haemorrhagic fluid around eyes, and ventral petechial haemorrhages. The Post mortem examination revealed, abdominal fat haemorrhage, pericarditis and enlargement of the liver, spleen and kidney. Gram-stained smears revealed the presence of Gram-positive cocci, ß-hemolytic, oxidase and catalase negative. Analysis of the 16S rRNA gene confirmed that the 17 tilapia isolates studied were 6/17 Enterococcus faecalis, 2/17 Enterococcus gallinarum, 3/17 Streptococcus pluranimalium, 2/17 Aerococcus viridans, 1/17 isolate of each Streptococcus dysgalactiae, Streptococcus anginosus, Lactococcus garvieae and Granulicetella elegans/Leuconostoc mesenteroides cremoris. It should be noted that there was no mixed infection. Multiple resistance was observed and the most frequent antibiotic combination was penicillin, ampicillin, vancomycin, chloramphenicol, rifampicin, ofloxacin, clindamycin, erythromycin and tetracycline representing eight classes. CONCLUSIONS: Consequently, we concluded that Streptococcus species are an emerging pathogen for Nile tilapia aquaculture in Egypt and to be considered as a new candidate in the warm water fish diseases in Egypt with special reference to L. garvieae, S. dysgalactiae in addition to L. mesenteroides cremoris which was not reported before from tilapia and taking into consideration their zoonotic implications for public health.


Subject(s)
Cichlids/microbiology , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Cocci/isolation & purification , Animals , Aquaculture , Drug Resistance, Bacterial , Egypt , Fish Diseases/pathology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/pathology , Gram-Positive Cocci/classification , Gram-Positive Cocci/genetics , RNA, Ribosomal, 16S , Sepsis/microbiology , Sepsis/veterinary
12.
BMC Microbiol ; 16(1): 263, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27821054

ABSTRACT

BACKGROUND: One of the foodborne pathogens is Listeria monocytogenes, which causes serious invasive illness in elderly and immunocompromised patients, pregnant women, newborns and infants ranking second after salmonellosis because of its high case fatality rate. Listerial cow mastitis marked by abnormal milk, increased cell counts and reduced production has not been reported. Therefore, apparently healthy cows can be reservoirs of L. monocytogenes. A number of 203 udder milk samples from apparently healthy animals (buffalo, n = 100; cow, n = 103) were collected and tested for Listeria. Isolated colonies on the PALCAM agar were Listeria species confirmed according to their biochemical and the Christie-Atkins-Munch-Petersen (CAMP) reactions. The Listeria species pathogenicity of was tested by phosphatidylinositol-specific phospholipase C, DL-alanine-ß-naphthylamide HCl, Dalanine-p-nitroanilide tests, chick embryo, mice inoculation tests, Vero cell cytotoxicity and biofilm formation. The virulence-associated genes, hlyA, plcB, actA and iap associated with Listeria were molecularly assayed. RESULTS: The 17 isolated Listeria spp. represented a prevalence rate of 8.4 %. Of these 3 (1.4 %), 2 (1 %), 5 (2.5 %), 4 (2 %) and 3 (1.5 %) were confirmed as L. monocytogenes, L. innocua, L. welshimeri, L. seelegeri, respectively. While the L. monocytogenes isolate displayed all the four virulence-associated genes, L. seelegeri carried the hlyA gene only. The L. monocytogenes had a strong in vitro affinity to form a biofilm, in particular serotype 4 which is associated with human infections. L. monocytogenes showed resistance for 9/27 antibiotics. CONCLUSIONS: The biofilm forming capability of the Listeria spps. makes them particularly successful in colonizing surfaces within the host thus being responsible for persistence infections and due to their antimicrobial resistant phenotype that this structure confers. In addition, strains belonging to serotypes associated with human infections and characterized by pathogenic potential (serotype 4) are capable to persist within the processing plants forming biofilm and thus being a medical hazard.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms , Drug Resistance, Bacterial , Listeria/drug effects , Listeria/pathogenicity , Milk/microbiology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cattle , Listeria/classification , Listeria/isolation & purification , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
13.
Front Microbiol ; 7: 1354, 2016.
Article in English | MEDLINE | ID: mdl-27617012

ABSTRACT

Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The acquisition of vancomycin resistance by enterococci (VRE) has seriously affected the treatment and infection control of these organisms. VRE are frequently resistant to all antibiotics that are effective treatment for vancomycin-susceptible enterococci, which leaves clinicians treating VRE infections with limited therapeutic options. With VRE emerging as a global threat to public health, we aimed to isolate, identify enterococci species from tilapia and their resistance to van-mediated glycopeptide (vanA and vanC) as well as the presence of enterococcal surface protein (esp) using conventional and molecular methods. The cultural, biochemical (Vitek 2 system) and polymerase chain reaction results revealed eight Enterococcus isolates from the 80 fish samples (10%) to be further identified as E. faecalis (6/8, 75%) and E gallinarum (2/8, 25%). Intraperitoneal injection of healthy Nile tilapia with the eight Enterococcus isolates caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post-injection with general signs of septicemia. All of the eight Enterococcus isolates were found to be resistant to tetracycline. The 6/6 E. faecalis isolates were susceptible for penicillin, nitrofurantoin, gentamicin, and streptomycin. On the other hand 5/6 were susceptible for ampicillin, vancomycin, chloramphenicol, and ciprofloxacin. The two isolates of E. gallinarum were sensitive to rifampicin and ciprofloxacin and resistant to vancomycin, chloramphenicol, and erythromycin. Molecular characterization proved that they all presented the prototypic vanC element. On the whole, one of the two vancomycin resistance gene was present in 3/8 of the enterococci isolates, while the esp virulence gene was present in 1/8 of the enterococci isolates. The results in this study emphasize the potential role that aquatic environments are correlated to proximity to anthropogenic activities in determining the antimicrobial resistance patterns of Enterococcus spp. recovered from fish in the river Nile in Giza, Elmounib, Egypt as a continuation of our larger study on the reservoirs of antibiotic resistance in the environment.

14.
Front Microbiol ; 7: 222, 2016.
Article in English | MEDLINE | ID: mdl-26973606

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) have been found in various farm animal species throughout the world. Yet, methicillin-susceptible S. aureus (MSSA), methicillin-susceptible non-S. aureus (MS-NSA), and methicillin-resistant non-S. aureus (MR-NSA) were not investigated. Therefore, we persued to determine the diversity in their phenotypic virulence assay, phenotypic antimicrobial resistance profile and molecular characterization in one of the food chains in Egypt. Samples were collected during 2013 from beef meat at retail. Twenty seven isolates comprising five species (S. hyicus, S. aureus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus) were characterized for their antibiotic resistance phenotypic profile and antibiotic resistance genes (mecA, cfr, gyrA, gyrB, and grlA). Out of the 27 Staphylococcus isolates only one isolate was resistant to the 12 antibiotics representing nine classes. Raw beef meat sold across the Great Cairo zone, contains 66.7% of MRS, with highest prevalence was reported in S. aureus (66.7%), while the MRS non-S. aureus strains constituted 66.7% from which S. hyicus (60%), S. intermedius (33.3%), S. schleiferi subsp. coagulans (100%), and S. lentus (100%) were MRS. Seven S. aureus, six S. hyicus, four S. schleiferi subsp. coagulans, three S. intermedius, and one S. lentus isolates although being resistant to oxacillin yet, 11/27 (40.7%) carried the mecA gene. At the same time, the cfr gene was present in 2 of the nine S. aureus isolates, and totally undetectable in S. hyicus, S. schleiferi subsp. coagulans, S. intermedius, and S. lentus. Although, global researches largely focused into MRSA and MR-NSA in animals on pigs, the analysis of our results stipulates, that buffaloes and cattle could be MRSA dispersers and that this theme is not specific to pigs. Detection of MSSA virulence determinants is a must, as although oxacillin resistance may be absent yet, the MSSA may carry the virulence determinants which could be a source of perilous S. aureus for the human community.

15.
Foodborne Pathog Dis ; 12(5): 406-13, 2015 May.
Article in English | MEDLINE | ID: mdl-25789407

ABSTRACT

Coagulase-positive (CPS) and coagulase-negative (CNS) staphylococci cause staphylococcal food poisoning. Recently, CPS and CNS have received increasing attention due to their potential role in the dissemination of antibiotic resistance markers. The present study aimed to evaluate CPS and CNS species distribution and their antibiotic resistance profile isolated from chicken and beef meat. Fifty fresh, uncooked chicken parts and 50 beef meat cuts (local n=27; imported n=23) were used. One hundred staphylococcal isolates belonging to 11 species were isolated and identified from chicken (n=50) and beef (n=50) raw meat samples. Staphylococcus hyicus (26/100), lugdunensis (18/100), aureus (15/100) and epidermidis (14/100) were dominant. S. aureus was 100% resistant to penicillin and sulfamethoxazole/trimethoprim. Vancomycin-resistant S. aureus showed intermediate resistance (51%), which might indicate the dissemination of vancomycin resistance in the community and imply food safety hazards. The percentage of resistance to ß-lactams was variable, with the highest resistance being to penicillin (94%) and lowest to ampicillin-sulbactam (22%). Antimicrobial resistance was mainly against penicillin (94%), clindamycin (90%) and sulfamethoxazole/trimethoprim (82%). The results indicate that chicken and beef raw meat are an important source of antibiotic-resistant CPS and CNS.


Subject(s)
Meat/microbiology , Red Meat/microbiology , Staphylococcus/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Chickens , Drug Resistance, Multiple, Bacterial , Egypt , Food Contamination/analysis , Food Microbiology , Microbial Sensitivity Tests , Penicillins/pharmacology , Staphylococcus/classification , Staphylococcus/isolation & purification , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Sulfamethoxazole/pharmacology , Trimethoprim/pharmacology , Vancomycin/pharmacology , Vancomycin Resistance , beta-Lactams/pharmacology
16.
Pathog Glob Health ; 108(4): 191-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24915048

ABSTRACT

Studies on the prevalence and virulence genes of Klebsiella mastitis pathogens in a buffalo population are undocumented. Also, the association of rmpA kfu, uge, magA, Aerobactin, K1 and K2 virulent factors with K. pneumoniae buffalo, and cow mastitis is unreported. The virulence of K. pneumoniae was evaluated through both phenotypic and molecular assays. In vivo virulence was assessed by the Vero cell cytotoxicity, suckling mouse assay and mice lethality test. Antimicrobial susceptibility was tested by disk diffusion method. The 45 K. pneumoniae isolates from buffalo (n = 10/232) and cow (n = 35/293) milk were isolated (45/525; 8.6%) and screened via PCR for seven virulence genes encoding uridine diphosphate galactose 4 epimerase encoding gene responsible for capsule and smooth lipopolysaccharide synthesis (uge), siderophores (kfu and aerobactin), protectines or invasins (rmpA and magA), and the capsule and hypermucoviscosity (K1 and K2). The most common virulence genes were rmpA, kfu, uge, and magA (77.8% each). Aerobactin and K1 genes were found at medium rates of 66.7% each and K2 (55.6%). The Vero cell cytotoxicity and LD (50) in mice were found in 100% of isolates. A multidrug resistance pattern was observed for 40% of the antimicrobials. The distribution of virulence profiles indicate a role of rmpA, kfu, uge, magA, Aerobactin, and K1 and K2 in pathogenicity of K. pneumoniae in udder infections and invasiveness, and constitutes a threat for vulnerable animals, even more if they are in combination with antibiotic resistance.


Subject(s)
Animal Husbandry , Klebsiella Infections/microbiology , Klebsiella pneumoniae/isolation & purification , Liver Abscess/microbiology , Mammary Glands, Animal/microbiology , Mastitis/microbiology , Milk/microbiology , Animal Husbandry/standards , Animals , Bacterial Proteins/isolation & purification , Buffaloes , Cattle , Female , Guideline Adherence , Hygiene/standards , Klebsiella Infections/prevention & control , Klebsiella Infections/veterinary , Liver Abscess/veterinary , Mastitis/veterinary , Mice , Microbial Sensitivity Tests , Phenotype , Virulence Factors
17.
Pathog Glob Health ; 108(1): 21-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24548157

ABSTRACT

Goat and sheep milk is consumed by human populations throughout the world; as a result, it has been proposed as an alternative, nutrient-rich milk to feed infants allergic to cow's milk. Unfortunately, potentially harmful bacteria have not been thoroughly tested in goat or sheep milk. Listeria monocytogenes is a harmful bacterium that causes adverse health effects if ingested by humans. The purpose of this study was to estimate the prevalence and characterize the phenotype, genotype, virulence factors, biofilm formation, and antibiopotential of Listeria isolated from the milk of goat and sheep. Udder milk samples were collected from 107 goats and 102 sheep and screened for mastitis using the California mastitis test (CMT). Samples were then examined for the presence of pathogenic Listeria spp; if detected, the isolation of pathogenic Listeria (L. monocytogenes and Listeria ivanovii) was completed using isolation and identification techniques recommended by the International Organization for Standards (ISO 11290-1, 1996), in addition to serological, in vitro and in vivo pathogenicity tests. The isolates were subjected to PCR assay for virulence associated genes (hlyA, plcA, actA, and iap). Pathogenic Listeria spp. were isolated from 5·6% of goat and 3·9% sheep milk samples, with 33·3 and 25% of these selected samples respectively containing L. monocytogenes. The results of this study provide evidence of the low-likelihood of contamination leading to the presence of L. monocytogenes in raw goat and sheep milk; however, this study also confirmed a strong in vitro ability for biofilm formation and pathogenic capability of L. monocytogenes if discovered in the milk. L. monocytogenes may be present in goat and sheep milk and in order to reduce the exposure, hygienic milking conditions must be employed for the milk to be considered a safe alternative for human consumption.


Subject(s)
Biofilms , Cheese/microbiology , Dairying/standards , Drug Resistance, Bacterial , Listeria , Listeriosis/prevention & control , Mammary Glands, Animal/microbiology , Mastitis/microbiology , Mastitis/veterinary , Milk/microbiology , Animal Feed/microbiology , Animals , Egypt/epidemiology , Equipment Contamination , Female , Food Contamination , Food-Processing Industry/standards , Goats , Humans , Hygiene , Listeria/drug effects , Listeria/isolation & purification , Listeria/pathogenicity , Listeriosis/epidemiology , Male , Mastitis/epidemiology , Polymerase Chain Reaction , Prevalence , Sheep , Virulence , Virulence Factors
18.
Pathog Glob Health ; 108(1): 37-48, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24548159

ABSTRACT

Importing day-old ducklings (DOD) unknowingly infected with non-typhoid Salmonella (NTS) may be associated with disease risk. Domestic and international trade may enhance this risk. Salmonella enterica serovars, their virulence genes combinations and antibiotic resistance, garner attention for their potentiality to contribute to the adverse health effects on populations throughout the world. The aim of this study was to estimate the risk of imported versus domestic DOD as potential carriers of NTS. The results confirm the prevalence of salmonellosis in imported ducklings was 18·5% (25/135), whereas only 12% (9/75) of cases were determined in the domestic ducklings. Fourteen serovars (Salmonella enteritidis, Salmonella kisii, Salmonella typhimurium, Salmonella gaillac, Salmonella uno, Salmonella eingedi, Salmonella shubra, Salmonella bardo, Salmonella inganda, Salmonella kentucky, Salmonella stanley, Salmonella virchow, Salmonella haifa, and Salmonella anatum) were isolated from the imported ducklings, whereas only S. enteritidis, S. typhimurium, S. virchow, and S. shubra were isolated from the domestic ducklings. The isolated Salmonella serovars were 100% susceptible to only colistin sulphate and 100% resistant to lincomycin. The 14 Salmonella serovars were screened for 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) by PCR. The invA, sopB, and bcfC genes were detected in 100% of the Salmonella serovars; alternatively, the gipA gene was absent in all of the isolated Salmonella serovars. The 11 virulent genes were not detected in either of S. stanley or S. haifa serovars. The results confirm an association between antibiotic resistance and virulence of Salmonella in the DOD. This study confirms the need for a country adherence to strict public health and food safety regimes.


Subject(s)
Feces/microbiology , Meat Products/microbiology , Salmonella Infections, Animal/prevention & control , Salmonella enterica/isolation & purification , Salmonella enterica/pathogenicity , Animals , Animals, Domestic , Animals, Newborn , Bacteriophage Typing , Drug Resistance, Bacterial , Ducks , Egypt , Polymerase Chain Reaction , Public Health , Salmonella Infections, Animal/microbiology , Salmonella enterica/genetics , Serotyping , Virulence Factors/genetics
19.
Acta Trop ; 130: 1-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24161878

ABSTRACT

She-camel milk is an alternative solution for people allergic to milk; unfortunately, potential harmful bacteria have not been tested in she-camel milk. Listeria monocytogenes is one harmful bacterium that causes adverse health effects if chronically or acutely ingested by humans. The purpose of this study was to estimate the prevalence, characterize the phenotypic, genetic characterization, virulence factors, and antibiopotential harmful bacteria resistance profile of Listeria isolated from the milk of she-camel. Udder milk samples were collected from 100 she-camels and screened for mastitis using the California mastitis test (46 healthy female camels, 24 subclinical mastitic animals and 30 clinical mastitic animals). Samples were then examined for the presence of pathogenic Listeria spp; if located, the isolation of Listeria was completed using the International Organization for Standards technique to test for pathogenicity. The isolates were subjected to PCR assay for virulence-associated genes. Listeria spp. were isolated from 4% of samples and only 1.0% was confirmed as L. monocytogenes. The results of this study provide evidence for the low prevalence of intramammary Listeria infection; additionally, this study concludes she-camel milk in healthy camels milked and harvested in proper hygienic conditions may be used as alternative milk for human consumption.


Subject(s)
Camelus , Listeriosis/veterinary , Mastitis/veterinary , Milk/microbiology , Animals , Female , Humans , Hygiene , Listeria/isolation & purification , Listeria/pathogenicity , Listeriosis/epidemiology , Mastitis/epidemiology , Prevalence
20.
Microb Drug Resist ; 19(5): 370-7, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23621859

ABSTRACT

Four serotypes recovered from clinically diarrheic human faecal samples (Salmonella Muenster, Salmonella Florian, Salmonella Omuna and Salmonella Noya) were investigated for the presence of 11 virulence genes (invA, avrA, ssaQ, mgtC, siiD, sopB, gipA, sodC1, sopE1, spvC, and bcfC) and their association with antibiotic resistance. The 4 Salmonella serotypes lacked virulence genes gipA and spvC. Resistance to 7 of the 14 antimicrobials was detected. The frequency of resistance, to lincomycin and streptomycin (100% of the Salmonella Muenster [2/5], Salmonella Florian [1/5], Salmonella Omuna [1/5], and Salmonella Noya [1/5] isolates), chloramphenicol (100% of the Salmonella Muenster [2/5] and Salmonella Florian [1/5] isolates) and trimethoprim-sulfamethoxazole (100% of the Salmonella Florian [1/5] and Salmonella Omuna [1/5] isolates) was an outstanding feature. With the rest of the antibiotics, the four Salmonella serotypes exhibited a great diversity in their resistance patterns. Overall, the four Salmonella serotypes were resistant to more than one antimicrobial. The antimicrobials to which the Salmonella Muenster, Salmonella Florian, and Salmonella Omuna isolates were resistant, contributed to five different antimicrobial resistance profiles. The virulence associated genes invA, ssaQ, siiD, sopB, and bcfC genes were 100% associated with certain antimicrobial resistance phenotypes (streptomycin and lincosamide) not recorded previously, and secondly, the presence of invA, avrA, ssaQ, mgtC, siiD, sopB, and bcfC was associated with resistance to chloramphenicol. The results of this study will help in understanding the spread of virulence genotypes and antibiotic resistance in Salmonella in the region of study.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Diarrhea/drug therapy , Salmonella Infections/drug therapy , Salmonella enterica/pathogenicity , Virulence Factors/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Chloramphenicol/therapeutic use , Diarrhea/epidemiology , Diarrhea/microbiology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Egypt/epidemiology , Feces/microbiology , Female , Gene Expression Regulation, Bacterial , Humans , Infant , Lincomycin/therapeutic use , Male , Middle Aged , Salmonella Infections/epidemiology , Salmonella Infections/microbiology , Salmonella enterica/drug effects , Salmonella enterica/genetics , Salmonella enterica/isolation & purification , Streptomycin/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...