Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(11): e0257959, 2021.
Article in English | MEDLINE | ID: mdl-34767570

ABSTRACT

Wheat has a remarkable importance among cereals worldwide. Wheat stem and leaf rust constitute the main threats that destructively influence grain quality and yield production. Pursuing resistant cultivars and developing new genotypes including resistance genes is believed to be the most effective tool to overcome these challenges. This study is the first to use molecular markers to evaluate the genetic diversity of eighteen Egyptian wheat genotypes. Moreover, the molecular docking analysis was also used to assess the Cu-chitosan nanoparticle (CuChNp) treatment and its mode of action in disease control management. The tested genotypes were categorized into two main cluster groups depending on the similarity matrix, i.e the most resistant and susceptible genotypes to stem and leaf rust races. The results of SCoT primers revealed 140 polymorphic and 5 monomorphic bands with 97% polymorphism. While 121 polymorphic and 74 monomorphic bands were scored for SRAP primers (99% polymorphism). The genotypes Sakha 94, Sakha 95, Beni Sweif 4, Beni Sweif 7, Sohag 4 and Sohag 5 were resistant, while Giza 160 was highly susceptible to all stem rust races at the seedling stage. However, in the adult stage, the 18 genotypes were evaluated for stem and leaf rust-resistant in two different locations, i.e. Giza and Sids. In this investigation, for the first time, the activity of CuChNp was studied and shown to have the potential to inhibit stem and leaf rust in studied Egyptian wheat genotypes. The Spraying Cu-chitosan nanoparticles showed that the incubation and latent periods were increased in treated plants of the tested genotypes. Molecular modeling revealed their activity against the stem and leaf rust development. The SRAP and SCoT markers were highly useful tools for the classification of the tested wheat genotypes, although they displayed high similarities at the morphological stage. However, Cu-chitosan nanoparticles have a critical and effective role in stem and leaf rust disease control.


Subject(s)
Antifungal Agents/chemistry , Chitosan/chemistry , Copper/chemistry , Genotype , Metal Nanoparticles/chemistry , Molecular Docking Simulation/methods , Plant Diseases/microbiology , Polymorphism, Genetic , Triticum/genetics , Antifungal Agents/pharmacology , Disease Resistance/genetics , Egypt , Genetic Markers/genetics , Plant Stems/microbiology , Puccinia/drug effects , Seedlings/microbiology , Triticum/microbiology
2.
Saudi J Biol Sci ; 28(10): 5738-5744, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34588885

ABSTRACT

Plant tissue culture technology offers a solution for meeting the increasing commercial demand on economically important plants such as rice, a widespread dietary staple. However, significant genotype-specific morphogenetic responses constitute a considerable on rice regeneration in plant biotechnology contexts. Aside from genotype dependency, the components of the nutrient media including gelling agents have an important impact on regeneration efficiency. The current study explores the effect of different gelling agents on various stages of rice regeneration in two Egyptian rice cultivars-Sakha104 and Giza178. Media solidified with varying concentrations of a variety of gelling agents (agar, bacto agar, gelrite and phytagel) were tested for their impact on the frequency of callus induction, shoot regeneration and rooting. The results indicated gellan gum (gelrite and phytagel) was superior to agar products (agar and bacto agar) for callus induction. By contrast, no significant differences were found between different gelling agents for shoot regeneration. Gellan gum and media solidified with bacto agar were found to lead to significantly higher root regeneration than agar. The Sakha104 cultivar showed better responses than Giza 178 for callus induction and similar performance to the Giza 178 cultivar for root regeneration irrespective of the gelling agent. This work provides insights into the impact of different gelling agents on the morphogenetic response of two rice cultivars and can be used to help maximize the frequency of rice regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...