Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Metabolites ; 14(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535315

ABSTRACT

Enzyme-substrate interactions play a fundamental role in elucidating synthesis pathways and synthetic biology, as they allow for the understanding of important aspects of a reaction. Establishing the interaction experimentally is a slow and costly process, which is why this problem has been addressed using computational methods such as molecular dynamics, molecular docking, and Monte Carlo simulations. Nevertheless, this type of method tends to be computationally slow when dealing with a large search space. Therefore, in recent years, methods based on artificial intelligence, such as support vector machines, neural networks, or decision trees, have been implemented, significantly reducing the computing time and covering vast search spaces. These methods significantly reduce the computation time and cover broad search spaces, rapidly reducing the number of interacting candidates, as they allow repetitive processes to be automated and patterns to be extracted, are adaptable, and have the capacity to handle large amounts of data. This article analyzes these artificial intelligence-based approaches, presenting their common structure, advantages, disadvantages, limitations, challenges, and future perspectives.

2.
Molecules ; 28(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36985571

ABSTRACT

Cancer is a major cause of death and an impediment to increasing life expectancy worldwide. With the aim of finding new molecules for chemotherapeutic treatment of epidemiological relevance, ten alkaloid fractions from Amaryllidaceae species were tested against six cancer cell lines (AGS, BT-549, HEC-1B, MCF-7, MDA-MB 231, and PC3) with HaCat as a control cell line. Some species determined as critically endangered with minimal availability were propagated using in vitro plant tissue culture techniques. Molecular docking studies were carried out to illustrate binding orientations of the 30 Amaryllidaceae alkaloids identified in the active site of some molecular targets involved with anti-cancer activity for potential anti-cancer drugs. In gastric cancer cell line AGS, the best results (lower cell viability percentages) were obtained for Crinum jagus (48.06 ± 3.35%) and Eucharis bonplandii (45.79 ± 3.05%) at 30 µg/mL. The research focused on evaluating the identified alkaloids on the Bcl-2 protein family (Mcl-1 and Bcl-xL) and HK2, where the in vitro, in silico and statistical results suggest that powelline and buphanidrine alkaloids could present cytotoxic activity. Finally, combining experimental and theoretical assays allowed us to identify and characterize potentially useful alkaloids for cancer treatment.


Subject(s)
Alkaloids , Amaryllidaceae Alkaloids , Amaryllidaceae , Antineoplastic Agents , Neoplasms , Plant Extracts/pharmacology , Amaryllidaceae/chemistry , Molecular Docking Simulation , Alkaloids/chemistry , Amaryllidaceae Alkaloids/pharmacology
3.
Plants (Basel) ; 12(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679035

ABSTRACT

Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an alkaloid extract of the bulbs of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) was evaluated in vitro, in vivo, and in silico against the parasite Leishmania braziliensis, and the chemical profile of the sample was determined by GC-MS analysis. At concentrations of 1, 10, and 100 µg·mL−1, the alkaloid extract presented inhibition percentages of 8.7%, 23.1%, and 98.8%, respectively, against L. braziliensis with a p < 0.05, and IC50 values of 18.5 ± 0.3 µg·mL−1. Furthermore, at a dose of 1.0 mg·kg−1, a greater decrease in lesion size was observed (90%) for in vivo assays, as well as a decrease in infection (96%), finding no significant differences (p > 0.05) in comparison with amphotericin B (92% and 98%, respectively). Eleven alkaloids were identified in C. milagroanthus bulbs: galanthamine, vittatine/crinine, 8-O-demethylmaritidine, anhydrolycorine, 11,12-dehydroanhydrolycorine, hippamine, lycorine, 2-hydroxyanhydrolycorine, 7-hydroxyclivonine, 2α-hydroxyhomolycorine, and 7-hydroxyclivonine isomer. A molecular model of Leishmania braziliensis trypanothione reductase (TRLb) was built using computational experiments to evaluate in silico the potential of the Amaryllidaceae alkaloid identified in C. milagroanthus toward this enzyme. The structures galanthamine, 7-hydroxyclivonine isomer, and crinine showed better estimated free energy of binding than the reference compound, amphotericin B. In conclusion, this is the first in vitro, in vivo, and in silico report about the antileishmanial potential and alkaloid profiling of the extract of C. milagroanthus bulbs, which could become an interesting source of bioactive molecules.

4.
Plants (Basel) ; 11(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559661

ABSTRACT

Plant biodiversity is an important source of compounds with medicinal properties. The alkaloid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA for the palliative treatment of mild to moderate Alzheimer's disease due to its acetylcholinesterase (AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to its low natural yield and the high cost of its synthesis. The aim of this work was to determine the alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the potential application of their extracts for the treatment of Alzheimer's disease. The alkaloids were identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species, the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type structures. The R. multiflora extract was also the most active against AChE, with the half maximal inhibitory concentration (IC50) values of 0.17 ± 0.02 µg·mL-1 in comparison with the IC50 values of 0.53 ± 0.12 µg·mL-1 for galanthamine, used as a reference. Computational experiments were carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically showed a higher inhibition of hAChE and different interactions with the active site compared to galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indicate that R. multiflora is an important natural source of galanthamine-type structures and could be used as a model for the development of biotechnological tools necessary to advance the sustainable production of galanthamine.

5.
Biomed Pharmacother ; 150: 113016, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35483192

ABSTRACT

Zephyranthes carinata Herb., a specie of the Amaryllidoideae subfamily, has been reported to have inhibitory activity against acetylcholinesterase. However, scientific evidence related to their bioactive alkaloids has been lacking. Thus, this study describes the isolation of the alkaloids of this plant, and their inhibition of the enzymes acetylcholinesterase (eeAChE) and butyrylcholinesterase (eqBuChE), being galanthine the main component. Additionally, haemanthamine, hamayne, lycoramine, lycorine, tazettine, trisphaeridine and vittatine/crinine were also isolated. The results showed that galanthine has significant activity at low micromolar concentrations for eeAChE (IC50 = 1.96 µg/mL). The in-silico study allowed to establish at a molecular level the high affinity and the way galanthine interacts with the active site of the TcAChE enzyme, information that corroborates the result of the experimental IC50. However, according to molecular dynamics (MD) analysis, it is also suggested that galanthine presents a different inhibition mode that the one observed for galanthamine, by presenting interaction with peripheral anionic binding site of the enzyme, which prevents the entrance and exit of molecules from the active site. Thus, in vitro screening assays plus rapid computer development play an essential role in the search for new cholinesterase inhibitors by identifying unknown bio-interactions between bioactive compounds and biological targets.


Subject(s)
Alkaloids , Amaryllidaceae , Acetylcholinesterase/metabolism , Alkaloids/pharmacology , Amaryllidaceae/chemistry , Amaryllidaceae/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation
6.
S Afr J Bot ; 136: 91-99, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32982003

ABSTRACT

Alzheimer's disease is considered the most common cause of dementia and, in an increasingly aging population worldwide, the quest for treatment is a priority. Amaryllidaceae alkaloids are of main interest because of their cholinesterase inhibition potential, which is the main palliative treatment available for this disease. We evaluated the alkaloidal profile and the in vitro inhibitory activity on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) of bulb alkaloid extract of Phaedranassa dubia and Phaedranassa brevifolia collected in Ecuador. Using gas chromatography coupled to mass spectrometry (GC-MS), we identified typical Amaryllidaceae alkaloids in these species, highlighting the presence of lycorine-type alkaloids in P. dubia and haemanthamine/crinine-type in P. brevifolia. The species P. dubia and P. brevifolia showed inhibitory activities against AChE (IC50 values of 25.48 ± 0.39 and 3.45 ± 0.29 µg.mL-1, respectively) and BuChE (IC50 values of 114.96 ± 4.94 and 58.89 ± 0.55 µg.mL-1, respectively). Computational experiments allowed us to understand the interactions of the alkaloids identified in these samples toward the active sites of AChE and BuChE. In silico, some alkaloids detected in these Amaryllidaceae species presented higher estimated binding free energy toward BuChE than galanthamine. This is the first study about the alkaloid profile and biological potential of P. brevifolia species.

7.
Molecules ; 25(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365796

ABSTRACT

It is estimated that 50 million people in the world live with dementia, 60-70% of whom suffer from Alzheimer's disease (AD). Different factors are involved in the development of AD, including a reduction in the cholinergic neurotransmission level. The Amaryllidaceae plant family contains an exclusive, large, and still understudied alkaloid group characterized by a singular skeleton arrangement and a broad spectrum of biological activities. The chemistry and biodiversity of Ecuadorian representatives of the Phaedranassa genus (Amaryllidaceae) have not been widely studied. In this work, five Ecuadorian Phaedranassa species were examined in vitro for their activity towards the enzymes acetyl- (AChE) and butyrylcholinesterase (BuChE), and the alkaloid profile of bulb extracts was analyzed by GC-MS. The species Phaedranassa cuencana and Phaedranassa dubia showed the most AChE and BuChE inhibitory activity, respectively. To obtain insight into the potential role of the identified alkaloids in these inhibitory effects, docking experiments were carried out, and cantabricine showed in silico inhibitory activity against both cholinesterase structures. Our results show that Amaryllidaceae species from Ecuador are a potential source of new drugs for the palliative treatment of AD.


Subject(s)
Amaryllidaceae/chemistry , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Acetylcholinesterase/chemistry , Alkaloids/chemistry , Alkaloids/pharmacology , Binding Sites , Drug Discovery , Ecuador , Gas Chromatography-Mass Spectrometry , Models, Molecular , Molecular Conformation , Molecular Structure , Phytochemicals/chemistry , Phytochemicals/pharmacology , Protein Binding , Structure-Activity Relationship
8.
PLoS One ; 14(9): e0215793, 2019.
Article in English | MEDLINE | ID: mdl-31483779

ABSTRACT

Cyclin-dependent kinase 2 (CDK2) is an important member of the CDK family exerting its most important function in the regulation of the cell cycle. It catalyzes the transfer of the gamma phosphate group from an ATP (adenosine triphosphate) molecule to a Serine/Threonine residue of a peptide substrate. Due to the importance of this enzyme, and protein kinases in general, a detailed understanding of the reaction mechanism is desired. Thus, in this work the phosphoryl transfer reaction catalyzed by CDK2 was revisited and studied by means of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations. Our results suggest that the base-assisted mechanism is preferred over the substrate-assisted pathway when one Mg2+ is present in the active site, in agreement with a previous theoretical study. The base-assisted mechanism resulted to be dissociative, with a potential energy barrier of 14.3 kcal/mol, very close to the experimental derived value. An interesting feature of the mechanism is the proton transfer from Lys129 to the phosphoryl group at the second transition state, event that could be helping in neutralizing the charge on the phosphoryl group upon the absence of a second Mg2+ ion. Furthermore, important insights into the mechanisms in terms of bond order and charge analysis were provided. These descriptors helped to characterize the synchronicity of bond forming and breaking events, and to characterize charge transfer effects. Local interactions at the active site are key to modulate the charge distribution on the phosphoryl group and therefore alter its reactivity.


Subject(s)
Cyclin-Dependent Kinase 2/chemistry , Cyclin-Dependent Kinase 2/metabolism , Models, Chemical , Models, Molecular , Hydrogen Bonding , Molecular Dynamics Simulation , Phosphorylation , Protein Conformation , Quantum Theory , Structure-Activity Relationship , Substrate Specificity
9.
Molecules ; 23(7)2018 06 26.
Article in English | MEDLINE | ID: mdl-29949847

ABSTRACT

Amaryllidaceae plants are the commercial source of galanthamine, an alkaloid approved for the clinical treatment of Alzheimer's disease. The chemistry and bioactivity of Chilean representatives of Rhodophiala genus from the family of Amaryllidaceae have not been widely studied so far. Ten collections of five different Chilean Rhodophiala were analyzed in vitro for activity against enzymes such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) as well as for their alkaloid composition by GC-MS. To obtain an insight into the potential AChE and BuChE inhibitory activity of the alkaloids identified in the most active samples, docking experiments were carried out. Although galanthamine was found neither in aerial parts nor in bulbs of R. splendens, these plant materials were the most active inhibitors of AChE (IC50: 5.78 and 3.62 µg/mL, respectively) and BuChE (IC50: 16.26 and 14.37 µg/mL, respectively). Some 37 known alkaloids and 40 still unidentified compounds were detected in the samples, suggesting high potential in the Chilean Amaryllidaceae plants as sources of both novel bioactive agents and new alkaloids.


Subject(s)
Alkaloids/pharmacology , Amaryllidaceae/chemistry , Cholinesterase Inhibitors/pharmacology , Molecular Docking Simulation , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alkaloids/chemistry , Biomass , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemistry , Thermodynamics
10.
Life Sci ; 203: 54-65, 2018 Jun 15.
Article in English | MEDLINE | ID: mdl-29679699

ABSTRACT

AIMS: Determine a relationship between the neuroprotective activity and the antioxidant capacity of the Amaryllidaceae alkaloids in a model of Glu excitotoxicity in rat cortical neurons. MATERIALS AND METHODS: Was evaluated several alkaloidal fractions isolated from Amaryllidaceae species, a family known to contain neuroprotective alkaloids, in a model of Glu excitotoxicity in rat cortical neurons. In addition, several mechanisms of antioxidant activity were used, and a theoretical study of the antioxidants was performed. KEY FINDINGS: The results of this study suggest that a possible neuroprotective mode of action of the alkaloidal fractions of Eucharis bonplandii (Kunth) Traub bulbs, Eucharis caucana Meerow bulbs, and Clivia miniata Regel leaves, is through their antioxidant activity and ability to stabilize free radicals generated from an excitotoxic process mediated by Glu. The chemical structure characterization and antioxidant activity of the fractions suggest that the phenol and enol groups in the structures of the alkaloids are critical for the stabilization of ROS and RNS. Additionally, the pair of free electrons on the N is spatially close to a hydroxyl group, which benefits the cleavage of this group and, consequently, the stabilization of the generated O. SIGNIFICANCE: The versatility of the structures of the studied Amaryllidaceae alkaloids suggests that they have potential as neuroprotective agents against an oxidative stimulus.


Subject(s)
Amaryllidaceae Alkaloids/pharmacology , Antioxidants/pharmacology , Embryo, Mammalian/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Embryo, Mammalian/cytology , Molecular Structure , Neurons/pathology , Oxidation-Reduction , Rats , Rats, Wistar
11.
Phytochem Anal ; 29(2): 217-227, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29044771

ABSTRACT

INTRODUCTION: Enzymatic inhibition of acetylcholinesterase (AChE) is an essential therapeutic target for the treatment of Alzheimer's disease (AD) and AChE inhibitors are the first-line drugs for it treatment. However, butyrylcholinesterase (BChE), contributes critically to cholinergic dysfunction associated with AD. Thus, the development of novel therapeutics may involve the inhibition of both cholinesterase enzymes. OBJECTIVE: To evaluate, in an integrated bioguided study, cholinesterases alkaloidal inhibitors of Amaryllidaceae species. METHODOLOGY: The proposed method combines high-performance thin-layer chromatography (HPTLC) with data analysis by densitometry, enzymatic bioautography with different AChEs and BChEs, the detection of bioactive molecules through gas chromatography mass spectrometry (GC-MS) analysis of spots of interest, and theoretical in silico studies. RESULTS: To evaluate the bioguided method, the AChE and BChE inhibitory activities of seven Amaryllidaceae plant extracts were evaluated. The alkaloid extracts of Eucharis bonplandii exhibited a high level of inhibitory activity (IC50  = 0.72 ± 0.05 µg/mL) against human recombinant AChE (hAChE). Regarding human serum BChE (hBChE), the bulb and leaf extracts of Crinum jagus had the highest activity (IC50  = 8.51 ± 0.56 µg/mL and 11.04 ± 1.21 µg/mL, respectively). In the HPTLC spots with high inhibitory activity, several alkaloids were detected using GC-MS, and some of these alkaloids were identified. Galanthamine, galanthamine N-oxide and powelline should be the most prominent inhibitors of substrate accommodation in the active site of the Torpedo californica AChE (TcAChE), hAChE and hBChE enzymes. CONCLUSIONS: These results are evidence of the chemical relevance of the Colombian's Amaryllidaceae species for the inhibition of cholinesterases and as potent sources for the palliative treatment of AD. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Acetylcholinesterase/drug effects , Alkaloids/isolation & purification , Amaryllidaceae/chemistry , Butyrylcholinesterase/drug effects , Cholinesterase Inhibitors/isolation & purification , Alkaloids/pharmacology , Animals , Cholinesterase Inhibitors/pharmacology , Chromatography, Thin Layer/methods , Gas Chromatography-Mass Spectrometry/methods , Horses , Humans , Molecular Docking Simulation , Plant Extracts/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Recombinant Proteins/drug effects , Torpedo
12.
Molecules ; 22(12)2017 Dec 09.
Article in English | MEDLINE | ID: mdl-29232852

ABSTRACT

The Amaryllidaceae family has proven to be a rich source of active compounds, which are characterized by unique skeleton arrangements and a broad spectrum of biological activities. The aim of this work was to perform the first detailed study of the alkaloid constituents of Hippeastrum reticulatum (Amaryllidaceae) and to determine the anti-parasitological and cholinesterase (AChE and BuChE) inhibitory activities of the epimers (6α-hydroxymaritidine and 6ß-hydroxymaritidine). Twelve alkaloids were identified in H. reticulatum: eight known alkaloids by GC-MS and four unknown (6α-hydroxymaritidine, 6ß-hydroxymaritidine, reticulinine and isoreticulinine) by NMR. The epimer mixture (6α-hydroxymaritidine and 6ß-hydroxymaritidine) showed low activity against all protozoan parasites tested and weak AChE-inhibitory activity. Finally, a molecular docking analysis of AChE and BuChE proteins showed that isoreticulinine may be classified as a potential inhibitory molecule since it can be stabilized in the active site through hydrogen bonds, π-π stacking and hydrophobic interactions.


Subject(s)
Alkaloids/chemistry , Amaryllidaceae/chemistry , Antiparasitic Agents/chemistry , Cholinesterase Inhibitors/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alkaloids/pharmacology , Antiparasitic Agents/pharmacology , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain/drug effects , Cholinesterase Inhibitors/pharmacology , Gas Chromatography-Mass Spectrometry , Hydrogen Bonding/drug effects , Models, Molecular , Molecular Docking Simulation , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/pharmacology
13.
J Pharm Biomed Anal ; 102: 222-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25305596

ABSTRACT

Acetylcholinesterase (AChE) enzymatic inhibition is an important target for the management of Alzheimer disease (AD) and AChE inhibitors are the mainstay drugs for its treatment. In order to discover new sources of potent AChE inhibitors, a combined strategy is presented based on AChE-inhibitory activity and chemical profiles by GC/MS, together with in silico studies. The combined strategy was applied on alkaloid extracts of five Amaryllidaceae species that grow in Colombia. Fifty-seven alkaloids were detected using GC/MS, and 21 of them were identified by comparing their mass-spectral fragmentation patterns with standard reference spectra in commercial and private library databases. The alkaloid extracts of Zephyranthes carinata exhibited a high level of inhibitory activity (IC50 = 5.97 ± 0.24 µg/mL). Molecular modeling, which was performed using the structures of some of the alkaloids present in this extract and the three-dimensional crystal structures of AChE derived from Torpedo californica, disclosed their binding configuration in the active site of this AChE. The results suggested that the alkaloids 3-epimacronine and lycoramine might be of interest for AChE inhibition. Although the galanthamine group is known for its potential utility in treating AD, the tazettine-type alkaloids should be evaluated to find more selective compounds of potential benefit for AD.


Subject(s)
Alkaloids/analysis , Cholinesterase Inhibitors/pharmacology , Gas Chromatography-Mass Spectrometry/methods , Liliaceae/metabolism , Plant Extracts/pharmacology , Alkaloids/chemistry , Alkaloids/pharmacology , Alzheimer Disease/drug therapy , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...