Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
2.
Eur J Hum Genet ; 32(9): 1086-1094, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997468

ABSTRACT

Myhre syndrome (MS, MIM 139210) is a rare multisystemic disorder caused by recurrent pathogenic missense variants in SMAD4. The clinical features have been mainly documented in childhood and comprise variable neurocognitive development, recognizable craniofacial features, a short stature with a pseudo-muscular build, hearing loss, thickened skin, joint limitations, diverse cardiovascular and airway manifestations, and increased fibrosis often following trauma or surgery. In contrast, adults with MS are underreported obscuring potential clinical variability. Here, we describe 24 adults with MS, including 17 diagnosed after the age of 18 years old, and we review the literature on adults with MS. Overall, our cohort shows a milder phenotype as well as lower mortality rates compared to what has been published in literature. Individuals with a codon 500 variant in SMAD4 present with a more pronounced neurodevelopmental and systemic phenotype. However, in contrast to the literature, we observe cardiovascular abnormalities in individuals with the p.(Arg496Cys) variant. In addition, we describe scoliosis as a new manifestation and we report fertility in two additional males with the p.(Arg496Cys). In conclusion, our study contributes novel insights into the clinical variability of MS and underscores the importance of variant-specific considerations, and we provide recommendations for the management of MS in adulthood.


Subject(s)
Intellectual Disability , Phenotype , Smad4 Protein , Humans , Male , Adult , Female , Smad4 Protein/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Intellectual Disability/diagnosis , Cryptorchidism/genetics , Cryptorchidism/pathology , Adolescent , Growth Disorders/genetics , Growth Disorders/pathology , Middle Aged , Mutation, Missense , Facies , Genetic Association Studies , Hand Deformities, Congenital
3.
Nat Commun ; 15(1): 5654, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969669

ABSTRACT

Hematopoietic stem cell transplantation can deliver therapeutic proteins to the central nervous system (CNS) through transplant-derived microglia-like cells. However, current conditioning approaches result in low and slow engraftment of transplanted cells in the CNS. Here we optimized a brain conditioning regimen that leads to rapid, robust, and persistent microglia replacement without adverse effects on neurobehavior or hematopoiesis. This regimen combines busulfan myeloablation and six days of Colony-stimulating factor 1 receptor inhibitor PLX3397. Single-cell analyses revealed unappreciated heterogeneity of microglia-like cells with most cells expressing genes characteristic of homeostatic microglia, brain-border-associated macrophages, and unique markers. Cytokine analysis in the CNS showed transient inductions of myeloproliferative and chemoattractant cytokines that help repopulate the microglia niche. Bone marrow transplant of progranulin-deficient mice conditioned with busulfan and PLX3397 restored progranulin in the brain and eyes and normalized brain lipofuscin storage, proteostasis, and lipid metabolism. This study advances our understanding of CNS repopulation by hematopoietic-derived cells and demonstrates its therapeutic potential for treating progranulin-dependent neurodegeneration.


Subject(s)
Busulfan , Microglia , Progranulins , Animals , Microglia/metabolism , Microglia/drug effects , Progranulins/metabolism , Progranulins/genetics , Mice , Busulfan/pharmacology , Hematopoietic Stem Cell Transplantation , Aminopyridines/pharmacology , Brain/metabolism , Pyrroles/pharmacology , Mice, Inbred C57BL , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/cytology , Bone Marrow Transplantation , Male , Central Nervous System/metabolism , Mice, Knockout , Transplantation Conditioning/methods , Single-Cell Analysis , Cytokines/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
4.
iScience ; 27(6): 109915, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38832008

ABSTRACT

Red blood cells possess a singular mechanobiology, enabling efficient navigation through capillaries smaller than their own size. Their plasma membrane exhibits non-equilibrium shape fluctuation, often reported as enhanced flickering activity. Such active membrane motion is propelled by motor proteins that mediate interactions between the spectrin skeleton and the lipid bilayer. However, modulating the flickering in living red blood cells without permanently altering their mechanical properties represents a significant challenge. In this study, we developed holographic optical tweezers to generate a force field distributed along the equatorial membrane contour of individual red blood cells. In free-standing red blood cells, we observed heterogeneous flickering activity, attributed to localized membrane kickers. By employing holographic optical forces, these active kickers can be selectively halted under minimal invasion. Our findings shed light on the dynamics of membrane flickering and established a manipulation tool that could open new avenues for investigating mechanotransduction processes in living cells.

5.
Med Mycol ; 62(7)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38806236

ABSTRACT

Histoplasmosis presents a substantial clinical challenge globally, with a particular prevalence in South America, especially among patients with concurrent Human Immunodeficiency Virus (HIV) infection. Despite itraconazole's established efficacy, investigating alternative therapeutic approaches remains imperative. This is the largest study in our region to date, assessing the effectiveness of the less explored posaconazole treatment. This observational study, conducted at Fundación Valle del Lili (FVL) from 2016 to 2022, encompassed adults with disseminated histoplasmosis. Patients (n = 31) were treated with liposomal amphotericin B as an initial treatment, followed by consolidation treatment with posaconazole or itraconazole. Patients with single-organ cases, those lacking microbiological diagnosis, those who received initial treatment with antifungals other than liposomal Amphotericin B and those with < 6 months follow-up were excluded (Figure 1). Analyses considered population characteristics, treatments, and outcomes. Patients (average age: 45.6; 58.1% female) had common comorbidities (HIV 38.7%, solid organ transplantation 29% and oncologic disease 12.9%). Lungs (48.4%) and lymph nodes (16.1%) were commonly affected. Biopsy (64.5%) was the primary diagnostic method. Initial treatment with liposomal amphotericin B (100%) was given for 14 days on average. Follow-up indicated 71% completion with 19.4% requiring treatment modifications. Notably, 70.9% completed a posaconazole consolidation regimen over 350 days on average. Drug interactions during consolidation (80.6%) were common. No relapses occurred, and three deaths unrelated to histoplasmosis were reported. Traditionally, itraconazole has been the prevalent initial treatment; however, in our cohort, 55.9% of patients received posaconazole as the primary option. Encouragingly, posaconazole showed favorable tolerance and infection resolution, suggesting its potential as an effective and well-tolerated alternative for consolidation treatment. This finding prompts further exploration of posaconazole, potentially leading to more effective patient care and better outcomes.


Histoplasmosis is a critical concern in South America, notably among human immunodeficiency virus patients, leading to high mortality rates. This study, the largest in our region, investigates the effectiveness of posaconazole as an alternative treatment to itraconazole. The results offer the potential for enhanced patient care and improved outcomes.


Subject(s)
Amphotericin B , Antifungal Agents , Histoplasmosis , Itraconazole , Humans , Histoplasmosis/drug therapy , Histoplasmosis/epidemiology , Histoplasmosis/diagnosis , Male , Female , Antifungal Agents/therapeutic use , Middle Aged , Colombia/epidemiology , Adult , Amphotericin B/therapeutic use , Itraconazole/therapeutic use , Triazoles/therapeutic use , Treatment Outcome , HIV Infections/complications , HIV Infections/drug therapy , Aged , Histoplasma/isolation & purification , Histoplasma/drug effects
6.
IDCases ; 36: e01965, 2024.
Article in English | MEDLINE | ID: mdl-38699529

ABSTRACT

Background: Listeria monocytogenes, a Gram-positive bacillus, primarily affects immunocompromised individuals. Endocarditis is a rare but severe complication of L. monocytogenes bacteremia, irrespective of native or prosthetic valves. While there is no standardized treatment, the use of ampicillin proves effective in most cases. Surgical intervention is reserved for cases involving valve dehiscence, heart failure, or myocardial abscess. Case presentation: A 54-year-old female, with mitral valve replacement, presented with fever, chest pain and dyspnea at rest. Patient was initially diagnosed with bacterial pneumonia; however, subsequent evaluation revealed L. monocytogenes bacteremia, resulting in endocarditis. Surgical management was contraindicated due to multiple prior valve replacement surgeries. Symptoms resolution, along with improvements in echocardiographic and clinical parameters, was achieved through extended antibiotic treatment only with no surgical intervention. Conclusion - key takeaways: This case underscores the critical importance of individualized treatment approaches in endocarditis, particularly in patients with surgery approach contraindication, and emphasized the success achieved through ampicillin-based management.

7.
Res Sq ; 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37790525

ABSTRACT

Hematopoietic stem cell transplantation can deliver therapeutic proteins to the CNS through donor-derived hematopoietic cells that become microglia-like cells. However, using standard conditioning approaches, hematopoietic stem cell transplantation is currently limited by low and slow engraftment of microglia-like cells. We report an efficient conditioning regimen based on Busulfan and a six-day course of microglia depletion using the colony-stimulating factor receptor 1 inhibitor PLX3397. Combining Busulfan-myeloablation and transient microglia depletion results in robust, rapid, and persistent microglia replacement by bone marrow-derived microglia-like cells throughout the CNS. Adding PLX3397 does not affect neurobehavior or has adverse effects on hematopoietic reconstitution. Through single-cell RNA sequencing and high-dimensional CyTOF mass cytometry, we show that microglia-like cells are a heterogeneous population and describe six distinct subpopulations. Though most bone-marrow-derived microglia-like cells can be classified as homeostatic microglia, their gene signature is a hybrid of homeostatic/embryonic microglia and border associated-macrophages. Busulfan-myeloablation and transient microglia depletion induce specific cytokines in the brain, ultimately combining myeloid proliferative and chemo-attractive signals that act locally to repopulate microglia from outside the niche. Importantly, this conditioning approach demonstrates therapeutic efficacy in a mouse model of GRN deficiency. Transplanting wild-type bone marrow into Grn-/- mice conditioned with Busulfan plus PLX3397 results in high engraftment of microglia-like cells in the brain and retina, restoring GRN levels and normalizing lipid metabolism.

8.
Nat Biotechnol ; 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537500

ABSTRACT

Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.

10.
J Med Genet ; 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790351

ABSTRACT

PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.

11.
Mol Ther Methods Clin Dev ; 25: 392-409, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35573043

ABSTRACT

Autologous hematopoietic stem cell transplantation using genome-edited cells can become a definitive therapy for hematological and non-hematological disorders with neurological involvement. Proof-of-concept studies using human genome-edited hematopoietic stem cells have been hindered by the low efficiency of engraftment of the edited cells in the bone marrow and their modest efficacy in the CNS. To address these challenges, we tested a myeloablative conditioning regimen based on Busulfan in an immunocompromised model of mucopolysaccharidosis type 1. Compared with sub-lethal irradiation, Busulfan conditioning enhanced the engraftment of edited CD34+ cells in the bone marrow, as well the long-term homing and survival of bone-marrow-derived cells in viscera, and in the CNS, resulting in higher transgene expression and biochemical correction in these organs. Edited cell selection using a clinically compatible marker resulted in a population with low engraftment potential. We conclude that conditioning can impact the engraftment of edited hematopoietic stem cells. Furthermore, Busulfan-conditioned recipients have a higher expression of therapeutic proteins in target organs, particularly in the CNS, constituting a better conditioning approach for non-hematological diseases with neurological involvement.

12.
Am J Med Genet A ; 188(5): 1396-1406, 2022 05.
Article in English | MEDLINE | ID: mdl-35018708

ABSTRACT

WAC-related intellectual disability (ID) is a rare genetic condition characterized by a spectrum of neurodevelopmental disorders of varying severity, including global developmental delay (GDD), ID, and autism spectrum disorder. Here, we describe five affected individuals, age range 9-20 years, and provide proof of pathogenicity of a novel splicing variant. All individuals presented with GDD, some degree of ID, and variable dysmorphism. Except for feeding difficulties, all patients were healthy without major congenital malformations or medical comorbidities. All individuals were heterozygous for de novo, previously unreported, loss of function variants in WAC. Three unrelated patients from different ethnic backgrounds shared the intronic variant c.381+4_381+7delAGTA, which was predicted to alter splicing and was initially classified as a variant of uncertain significance. Reverse transcription-polymerase chain reaction analysis from one patient's cells confirmed aberrant splicing of the WAC transcript resulting in premature termination and a truncated protein p.(Gly92Alafs*2). These functional studies and the identification of several nonrelated individuals provide sufficient evidence to classify this variant as pathogenic. The clinical description of these five individuals and the three novel variants expand the genotypic and phenotypic spectrum of this ultrarare disease.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Neurodevelopmental Disorders , Adaptor Proteins, Signal Transducing/genetics , Adolescent , Adult , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Child , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Mutation , Young Adult
13.
NPJ Genom Med ; 6(1): 104, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876591

ABSTRACT

The histone H3 variant H3.3, encoded by two genes H3-3A and H3-3B, can replace canonical isoforms H3.1 and H3.2. H3.3 is important in chromatin compaction, early embryonic development, and lineage commitment. The role of H3.3 in somatic cancers has been studied extensively, but its association with a congenital disorder has emerged just recently. Here we report eleven de novo missense variants and one de novo stop-loss variant in H3-3A (n = 6) and H3-3B (n = 6) from Baylor Genetics exome cohort (n = 11) and Matchmaker Exchange (n = 1), of which detailed phenotyping was conducted for 10 individuals (H3-3A = 4 and H3-3B = 6) that showed major phenotypes including global developmental delay, short stature, failure to thrive, dysmorphic facial features, structural brain abnormalities, hypotonia, and visual impairment. Three variant constructs (p.R129H, p.M121I, and p.I52N) showed significant decrease in protein expression, while one variant (p.R41C) accumulated at greater levels than wild-type control. One H3.3 variant construct (p.R129H) was found to have stronger interaction with the chaperone death domain-associated protein 6.

14.
Mol Genet Genomic Med ; 9(10): e1809, 2021 10.
Article in English | MEDLINE | ID: mdl-34519438

ABSTRACT

The phenotypic variability associated with pathogenic variants in Lysine Acetyltransferase 6B (KAT6B, a.k.a. MORF, MYST4) results in several interrelated syndromes including Say-Barber-Biesecker-Young-Simpson Syndrome and Genitopatellar Syndrome. Here we present 20 new cases representing 10 novel KAT6B variants. These patients exhibit a range of clinical phenotypes including intellectual disability, mobility and language difficulties, craniofacial dysmorphology, and skeletal anomalies. Given the range of features previously described for KAT6B-related syndromes, we have identified additional phenotypes including concern for keratoconus, sensitivity to light or noise, recurring infections, and fractures in greater numbers than previously reported. We surveyed clinicians to qualitatively assess the ways families engage with genetic counselors upon diagnosis. We found that 56% (10/18) of individuals receive diagnoses before the age of 2 years (median age = 1.96 years), making it challenging to address future complications with limited accessible information and vast phenotypic severity. We used CRISPR to introduce truncating variants into the KAT6B gene in model cell lines and performed chromatin accessibility and transcriptome sequencing to identify key dysregulated pathways. This study expands the clinical spectrum and addresses the challenges to management and genetic counseling for patients with KAT6B-related disorders.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Histone Acetyltransferases/genetics , Mutation , Phenotype , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Alleles , Blepharophimosis/diagnosis , Blepharophimosis/genetics , Cohort Studies , Congenital Hypothyroidism/diagnosis , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/genetics , Facies , Genetic Counseling , Genetic Loci , Genotype , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Joint Instability/diagnosis , Joint Instability/genetics , Kidney/abnormalities , Male , Patella/abnormalities , Psychomotor Disorders/diagnosis , Psychomotor Disorders/genetics , Scrotum/abnormalities , Urogenital Abnormalities/diagnosis , Urogenital Abnormalities/genetics
15.
16.
Nat Commun ; 11(1): 3327, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32620863

ABSTRACT

Gaucher disease is a lysosomal storage disorder caused by insufficient glucocerebrosidase activity. Its hallmark manifestations are attributed to infiltration and inflammation by macrophages. Current therapies for Gaucher disease include life-long intravenous administration of recombinant glucocerebrosidase and orally-available glucosylceramide synthase inhibitors. An alternative approach is to engineer the patient's own hematopoietic system to restore glucocerebrosidase expression, thereby replacing the affected cells, and constituting a potential one-time therapy for this disease. Here, we report an efficient CRISPR/Cas9-based approach that targets glucocerebrosidase expression cassettes with a monocyte/macrophage-specific element to the CCR5 safe-harbor locus in human hematopoietic stem and progenitor cells. The targeted cells generate glucocerebrosidase-expressing macrophages and maintain long-term repopulation and multi-lineage differentiation potential with serial transplantation. The combination of a safe-harbor and a lineage-specific promoter establishes a universal correction strategy and circumvents potential toxicity of ectopic glucocerebrosidase in the stem cells. Furthermore, it constitutes an adaptable platform for other lysosomal enzyme deficiencies.


Subject(s)
Gene Editing/methods , Glucosylceramidase/metabolism , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/enzymology , Macrophages/enzymology , Monocytes/enzymology , Animals , Cell Differentiation/genetics , Cells, Cultured , Gaucher Disease/genetics , Gaucher Disease/therapy , Glucosylceramidase/genetics , HEK293 Cells , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Humans , Macrophages/metabolism , Metabolic Engineering , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Monocytes/metabolism , Transplantation, Autologous
17.
ACS Sens ; 5(8): 2415-2421, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32538083

ABSTRACT

Elevated blood ammonia (hyperammonemia) may cause delirium, brain damage, and even death. Effective treatments exist, but preventing permanent neurological sequelae requires rapid, accurate, and serial measurements of blood ammonia. Standard methods require volumes of 1 to 3 mL, centrifugation to isolate plasma, and a turn-around time of 2 h. Collection, handling, and processing requirements mean that community clinics, particularly those in low resource settings, cannot provide reliable measurements. We describe a method to measure ammonia from small-volume whole blood samples in 2 min. The method alkalizes blood to release gas-phase ammonia for detection by a fuel cell. When an inexpensive first-generation instrument designed for 100 µL of blood was tested on adults and children in a clinical study, the method showed a strong correlation (R2 = 0.97) with an academic clinical laboratory for plasma ammonia concentrations up to 500 µM (16 times higher than the upper limit of normal). A second-generation hand-held instrument designed for 10-20 µL of blood showed a near-perfect correlation (R2 = 0.99) with healthy donor blood samples containing known amounts of added ammonium chloride up to 1000 µM. Our method can enable rapid and inexpensive measurement of blood ammonia, transforming diagnosis and management of hyperammonemia.


Subject(s)
Ammonia , Hyperammonemia , Adult , Child , Humans , Hyperammonemia/diagnosis , Point-of-Care Systems
18.
Mol Genet Metab ; 130(1): 58-64, 2020 05.
Article in English | MEDLINE | ID: mdl-32173240

ABSTRACT

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a fatal disorder characterized by progressive gastrointestinal dysmotility, peripheral neuropathy, leukoencephalopathy, skeletal myopathy, ophthalmoparesis, and ptosis. MNGIE stems from deficient thymidine phosphorylase activity (TP) leading to toxic elevations of plasma thymidine. Hematopoietic stem cell transplant (HSCT) restores TP activity and halts disease progression but has high transplant-related morbidity and mortality. Liver transplant (LT) was reported to restore TP activity in two adult MNGIE patients. We report successful LT in four additional MNGIE patients, including a pediatric patient. Our patients were diagnosed between ages 14 months and 36 years with elevated thymidine levels and biallelic pathogenic variants in TYMP. Two patients presented with progressive gastrointestinal dysmotility, and three demonstrated progressive peripheral neuropathy with two suffering limitations in ambulation. Two patients, including the child, had liver dysfunction and cirrhosis. Following LT, thymidine levels nearly normalized in all four patients and remained low for the duration of follow-up. Disease symptoms stabilized in all patients, with some manifesting improvements, including intestinal function. No patient died, and LT appeared to have a more favorable safety profile than HSCT, especially when liver disease is present. Follow-up studies will need to document the long-term impact of this new approach on disease outcome. Take Home Message: Liver transplantation is effective in stabilizing symptoms and nearly normalizing thymidine levels in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) and may have an improved safety profile over hematopoietic stem cell transplant.


Subject(s)
Liver Transplantation/methods , Mitochondria/metabolism , Mitochondrial Encephalomyopathies/therapy , Thymidine Phosphorylase/genetics , Adolescent , Adult , Esophageal Motility Disorders/genetics , Female , Hematopoietic Stem Cell Transplantation/mortality , Humans , Infant , Liver Transplantation/mortality , Magnetic Resonance Imaging , Male , Mitochondria/enzymology , Mitochondria/pathology , Mitochondrial Encephalomyopathies/diagnostic imaging , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/physiopathology , Peripheral Nervous System Diseases/genetics , Thymidine/blood , Exome Sequencing
19.
Int J Mol Sci ; 21(2)2020 Jan 13.
Article in English | MEDLINE | ID: mdl-31941077

ABSTRACT

Genome editing holds the promise of one-off and potentially curative therapies for many patients with genetic diseases. This is especially true for patients affected by mucopolysaccharidoses as the disease pathophysiology is amenable to correction using multiple approaches. Ex vivo and in vivo genome editing platforms have been tested primarily on MSPI and MPSII, with in vivo approaches having reached clinical testing in both diseases. Though we still await proof of efficacy in humans, the therapeutic tools established for these two diseases should pave the way for other mucopolysaccharidoses. Herein, we review the current preclinical and clinical development studies, using genome editing as a therapeutic approach for these diseases. The development of new genome editing platforms and the variety of genetic modifications possible with each tool provide potential applications of genome editing for mucopolysaccharidoses, which vastly exceed the potential of current approaches. We expect that in a not-so-distant future, more genome editing-based strategies will be established, and individual diseases will be treated through multiple approaches.


Subject(s)
Gene Editing , Mucopolysaccharidosis II/genetics , Mucopolysaccharidosis II/therapy , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL