Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Ecology ; 105(5): e4280, 2024 May.
Article in English | MEDLINE | ID: mdl-38566463

ABSTRACT

The effects of biodiversity on ecological processes have been experimentally evaluated mainly at the local scale under homogeneous conditions. To scale up experimentally based biodiversity-functioning relationships, there is an urgent need to understand how such relationships are affected by the environmental heterogeneity that characterizes larger spatial scales. Here, we tested the effects of an 800-m elevation gradient (a large-scale environmental factor) and forest habitat (a fine-scale factor) on litter diversity-decomposition relationships. To better understand local and landscape scale mechanisms, we partitioned net biodiversity effects into complementarity, selection, and insurance effects as applicable at each scale. We assembled different litter mixtures in aquatic microcosms that simulated natural tree holes, replicating mixtures across blocks nested within forest habitats (edge, interior) and elevations (low, mid, high). We found that net biodiversity and complementarity effects increased over the elevation gradient, with their strength modified by forest habitat and the identity of litter in mixtures. Complementarity effects at local and landscape scales were greatest for combinations of nutrient-rich and nutrient-poor litters, consistent with nutrient transfer mechanisms. By contrast, selection effects were consistently weak and negative at both scales. Selection effects at the landscape level were due mainly to nonrandom overyielding rather than spatial insurance effects. Our findings demonstrate that the mechanisms by which litter diversity affects decomposition are sensitive to environmental heterogeneity at multiple scales. This has implications for the scaling of biodiversity-ecosystem function relationships and suggests that future shifts in environmental conditions due to climate change or land use may impact the functioning of aquatic ecosystems.


Subject(s)
Biodiversity , Forests , Plant Leaves , Models, Biological , Trees/physiology
2.
Ecology ; 101(6): e03016, 2020 06.
Article in English | MEDLINE | ID: mdl-32083734

ABSTRACT

The Colombian Tropical Andes are one of the regions with highest bird diversity on Earth. However, information on bird morphology, reproductive phenology, and molt is particularly scarce in this region. Also, this region is heavily impacted by deforestation, and it is vulnerable to climate change. Hence, providing baseline information on life history and morphological traits will be essential to support future research on functional diversity, climate change effects, conservation, evolution, and phenology. To fill this gap, we have compiled information on bird distribution, morphology, molt, and reproductive phenology at 52 localities of the Department of Caldas, covering an elevation range between 148 and 3845 m. This compilation comprises a wide range of habitats, including native forests, forestry plantations, croplands, and paramo. Our database presents information for 3,398 records belonging to 379 bird species (representing 23 orders, 53 families, and 258 genera). From those records, 2,843 correspond to information collected in the field between 2008 and 2019, and the remaining 555 records correspond to specimens deposited in the Natural History Museum of the Caldas University, collected between 1969 and 2014. We measured nine morphological traits from all specimens: total culmen, gape, bill width, bill depth, tarsus, wing length, tail length, total length, and mass. We also have reproductive condition information for 257 species and molt information available for 378 species. The information contained in this data set represents ~20% of the Colombian avifauna and ~11% of the bird species richness in South America. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Subject(s)
Birds , Forests , Animals , Colombia , Ecosystem , Humans , South America
3.
Ecology ; 101(4): e02984, 2020 04.
Article in English | MEDLINE | ID: mdl-31958151

ABSTRACT

There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of drought-tolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of "safe ecosystem functioning" when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition.


Subject(s)
Climate Change , Ecosystem , Animals , Droughts , Invertebrates , Rain
4.
Ecol Evol ; 9(12): 7360-7372, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31380056

ABSTRACT

The unprecedented loss of biological diversity has negative impacts on ecosystems and the associated benefits which they provide to humans. Bromeliads have high diversity throughout the Neotropics, but they have been negatively affected by habitat loss and fragmentation, climate change, invasive species, and commercialization for ornamental purpose. These plants provide direct benefits to the human society, and they also form microecosystems in which accumulated water and nutrients support the communities of aquatic and terrestrial species, thus maintaining local diversity. We performed a systematic review of the contribution of bromeliads to ecosystem services across their native geographical distribution. We showed that bromeliads provide a range of ecosystem services such as maintenance of biodiversity, community structure, nutrient cycling, and the provisioning of food and water. Moreover, bromeliads can regulate the spread of diseases, and water and carbon cycling, and they have the potential to become important sources of chemical and pharmaceutical products. The majority of this research was performed in Brazil, but future research from other Neotropical countries with a high diversity of bromeliads would fill the current knowledge gaps and increase the generality of these findings. This systematic review identified that future research should focus on provisioning, regulating, and cultural services that have been currently overlooked. This would enhance our understanding of how bromeliad diversity contributes to human welfare, and the negative consequences that loss of bromeliad plants can have on communities of other species and the healthy functioning of the entire ecosystems.

5.
Rev. biol. trop ; 65(4): 1635-1659, Oct.-Dec. 2017. tab, graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-897648

ABSTRACT

Resumen Los ecosistemas dulceacuícolas están sometidos a fuertes presiones de tipo antrópico (e.g. agricultura y minería), las cuales ocasionan efectos adversos sobre la diversidad de insectos acuáticos. Se evaluó la comunidad de insectos en quebradas impactadas por agricultura y minería, y se determinó cómo estas actividades afectan a la comunidad. Se estudiaron seis quebradas en Caldas (Colombia), dos impactadas por minería, dos por agricultura y dos quebradas usadas como zonas de referencia. Los insectos fueron recolectados usando una red Surber con tres réplicas por tipo de sustrato (sedimento fino, roca y hojarasca). En total se recolectaron 12 502 insectos acuáticos. Los géneros más representativos fueron: Baetodes, Simulium y Cricotopus (57.7 %). Las quebradas impactadas por agricultura tienen baja diversidad de insectos acuáticos, comparado con las impactadas por minería (F2,309 = 21.82, p = 0.001). La zona agrícola presenta una estructura dominada por Simulium y Cricotopus (Diptera, morfoespecies tolerantes a la contaminación). Baetodes dominó en el sustrato roca, Cricotopus en el sedimento y Simulium y Cricotopus en la hojarasca (F2,309 = 2.84, p = 0.001). Por lo tanto, ambos factores (tipo de impacto y sustrato) son importantes para determinar la diversidad de insectos acuáticos. Nuestros resultados sugieren que la actividad agrícola tiene un mayor impacto sobre la diversidad de insectos acuáticos, los cuales pueden estar asociados con la pérdida de la vegetación ribereña.


Abstract Freshwater ecosystems are under severe anthropic pressure (e.g. agriculture and mining), which generates adverse effects on the diversity of aquatic insects. We evaluated the insect community in streams impacted by agriculture and mining, and determined how these activities affected the community. We studied six streams in Caldas (Colombia), two with mining and two with agriculture impact. We collected the insects using a Surber net with three replicates per substrate (fine sediment, stones, and litter). In total, 12 502 aquatic insects were collected. The most representative genera were Baetodes, Simulium, and Cricotopus (57.7 %). Streams with agricultural activity had lower aquatic insects diversity than mining impact (F2,309 = 21.82, p = 0.001). The agriculture areas presented a structure dominated by Simulium and Cricotopus (Diptera, pollution-tolerant morphospecies). Baetodes dominated in stones substrate, Cricotopus in sediment, and Simulium and Cricotopus dominated in litter (F2,309 = 2.84, p = 0.001). Therefore, both factors (impact and substrate type) are being important in determining the diversity of aquatic insects. Our results suggested that agricultural activity has a higher impact on the diversity of aquatic insects, which may be associated with the loss of riparian vegetation.

SELECTION OF CITATIONS
SEARCH DETAIL
...