Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1620, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35338120

ABSTRACT

Light-field driven charge motion links semiconductor technology to electric fields with attosecond temporal control. Motivated by ultimate-speed electron-based signal processing, strong-field excitation has been identified viable for the ultrafast manipulation of a solid's electronic properties but found to evoke perplexing post-excitation dynamics. Here, we report on single-photon-populating the conduction band of a wide-gap dielectric within approximately one femtosecond. We control the subsequent Bloch wavepacket motion with the electric field of visible light. The resulting current allows sampling optical fields and tracking charge motion driven by optical signals. Our approach utilizes a large fraction of the conduction-band bandwidth to maximize operating speed. We identify population transfer to adjacent bands and the associated group velocity inversion as the mechanism ultimately limiting how fast electric currents can be controlled in solids. Our results imply a fundamental limit for classical signal processing and suggest the feasibility of solid-state optoelectronics up to 1 PHz frequency.

3.
Nat Commun ; 12(1): 6518, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34764297

ABSTRACT

Transparent materials do not absorb light but have profound influence on the phase evolution of transmitted radiation. One consequence is chromatic dispersion, i.e., light of different frequencies travels at different velocities, causing ultrashort laser pulses to elongate in time while propagating. Here we experimentally demonstrate ultrathin nanostructured coatings that resolve this challenge: we tailor the dispersion of silicon nanopillar arrays such that they temporally reshape pulses upon transmission using slow light effects and act as ultrashort laser pulse compressors. The coatings induce anomalous group delay dispersion in the visible to near-infrared spectral region around 800 nm wavelength over an 80 nm bandwidth. We characterize the arrays' performance in the spectral domain via white light interferometry and directly demonstrate the temporal compression of femtosecond laser pulses. Applying these coatings to conventional optics renders them ultrashort pulse compatible and suitable for a wide range of applications.

4.
Appl Opt ; 59(5): A123-A127, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-32225363

ABSTRACT

Metal-dielectric phase-shifting multilayer optical elements have been developed, providing broadband, virtually dispersion-free polarization manipulation down to the few-cycle level. These optical elements are Ag/Al2O3 mirrors that operate in the spectral range from 500 to 100 nm, exhibiting reflectance higher than 95%, and a differential phase shift between the s- and p-polarization of about 90° distributed over four bounces. The mirrors have been designed, produced, and reliably characterized based on spectral photometric and ellipsometric data using a non-parametric approach as well as a multi-oscillator model. The optical elements were implemented into a few-cycle laser system, where they transformed linearly polarized few-cycle light pulses to circular polarization.

5.
Nature ; 561(7723): 374-377, 2018 09.
Article in English | MEDLINE | ID: mdl-30232421

ABSTRACT

Photoemission spectroscopy is central to understanding the inner workings of condensed matter, from simple metals and semiconductors to complex materials such as Mott insulators and superconductors1. Most state-of-the-art knowledge about such solids stems from spectroscopic investigations, and use of subfemtosecond light pulses can provide a time-domain perspective. For example, attosecond (10-18 seconds) metrology allows electron wave packet creation, transport and scattering to be followed on atomic length scales and on attosecond timescales2-7. However, previous studies could not disclose the duration of these processes, because the arrival time of the photons was not known with attosecond precision. Here we show that this main source of ambiguity can be overcome by introducing the atomic chronoscope method, which references all measured timings to the moment of light-pulse arrival and therefore provides absolute timing of the processes under scrutiny. Our proof-of-principle experiment reveals that photoemission from the tungsten conduction band can proceed faster than previously anticipated. By contrast, the duration of electron emanation from core states is correctly described by semiclassical modelling. These findings highlight the necessity of treating the origin, initial excitation and transport of electrons in advanced modelling of the attosecond response of solids, and our absolute data provide a benchmark. Starting from a robustly characterized surface, we then extend attosecond spectroscopy towards isolating the emission properties of atomic adsorbates on surfaces and demonstrate that these act as photoemitters with instantaneous response. We also find that the tungsten core-electron timing remains unchanged by the adsorption of less than one monolayer of dielectric atoms, providing a starting point for the exploration of excitation and charge migration in technologically and biologically relevant adsorbate systems.

6.
Appl Opt ; 56(32): 8978-8982, 2017 Nov 10.
Article in English | MEDLINE | ID: mdl-29131178

ABSTRACT

We demonstrate the performance of a novel multilayer dielectric reflective thin-film attenuator capable of reshaping the super-octave spectrum of near-single-cycle visible laser pulses without deteriorating the phase properties of the reflected light. These novel broadband attenuating mirrors reshape in a virtually dispersion-free manner the incident spectrum such that the carrier wavelength of the reflected pulses shifts from ∼700 nm (Eγ=1.77 eV) to ∼540 nm (Eγ=2.25 eV) or beyond while maintaining their initial near-single-cycle pulse duration. This constitutes a viable approach to convert a number of established few-cycle ultrafast laser systems into sources with a selectable excitation wavelength to meet the requirements of single-color/multicolor high temporal resolution spectroscopic experiments.

7.
Nanotechnology ; 25(7): 075203, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24452056

ABSTRACT

We present an optical investigation of surface plasmon polaritons propagating along nanoscale Au-wires, lithographically defined on GaAs substrates. A two-axis confocal microscope was used to perform spatially and polarization resolved measurements in order to confirm the guiding of surface plasmon polaritons over lengths ranging from 5 to 20 µm along nanowires with a lateral dimension of only ≈ 100 nm. Finite difference time domain simulations are used to corroborate our experimental observations, and highlight the potential to couple proximal quantum emitters to propagating plasmon modes in such extreme subwavelength devices. Our findings are of strong relevance for the development of semiconductor based integrated plasmonic and active quantum plasmonic nanosystems that merge quantum emitters with nanoscale plasmonic elements.

SELECTION OF CITATIONS
SEARCH DETAIL
...