Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 479: 116712, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37820772

ABSTRACT

In the brain, the efflux transporter P-glycoprotein (Pgp) is predominantly located on the luminal membrane of microvascular endothelial cells (BMECs) that form the blood-brain barrier. In addition, Pgp is localized in intracellular organelles involved in Pgp traffic and cycling and, by the release of extracellular vesicles (EVs), in intercellular Pgp transfer to cells with low Pgp expression. We recently described that drug exposure of a human BMEC line (hCMEC/D3) induces the release of Pgp-EGFP-containing EVs; however, the nature of the Pgp-enriched vesicles was not characterized. The two main categories of EVs are exosomes and microvesicles, which differ in origin, size, and molecular cargo. In the present study, we performed similar experiments with hCMEC/D3 cells in the absence and presence of doxorubicin and isolated and characterized the EVs released by the cells during the experiments by differential ultracentrifugation with/without subsequent sucrose gradient fractionation of EV pellets, proteomic profiling, EV size analysis, and confocal fluorescence microscopy. Using cocultures of hCMEC/D3 wildtype cells and cells transduced with MDR1-EGFP or monocultures of hCMEC/D3-MDR1-EGFP cells, we found release of both Pgp-enriched exosomes and microvesicles but analysis of the exosomal marker protein Rab7 indicated that doxorubicin increased particularly the release of exosomes. Transfer experiments with isolated EVs demonstrated EV endocytosis by recipient cells. EV release from BMECs in response to anticancer drugs such as doxorubicin likely serves different functions, including non-genetic intercellular transfer of a resistance phenotype to neighboring BMECs and a mechanism of drug extrusion that contributes to brain protection against potentially toxic chemotherapeutic drugs.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Extracellular Vesicles , Humans , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Endothelial Cells/metabolism , Proteomics , Brain/metabolism , Extracellular Vesicles/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Doxorubicin/pharmacology , Doxorubicin/metabolism
2.
J Gen Physiol ; 155(11)2023 11 06.
Article in English | MEDLINE | ID: mdl-37656049

ABSTRACT

Myosin heavy chain (MyHC) is the main determinant of contractile function. Human ventricular cardiomyocytes (CMs) predominantly express the ß-isoform. We previously demonstrated that ∼80% of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) express exclusively ß-MyHC after long-term culture on laminin-coated glass coverslips. Here, we investigated the impact of enzymatically detaching hESC-CMs after long-term culture and subsequently replating them for characterization of cellular function. We observed that force-related kinetic parameters, as measured in a micromechanical setup, resembled α- rather than ß-MyHC-expressing myofibrils, as well as changes in calcium transients. Single-cell immunofluorescence analysis revealed that replating hESC-CMs led to rapid upregulation of α-MyHC, as indicated by increases in exclusively α-MyHC- and in mixed α/ß-MyHC-expressing hESC-CMs. A comparable increase in heterogeneity of MyHC isoform expression was also found among individual human induced pluripotent stem cell (hiPSC)-derived CMs after replating. Changes in MyHC isoform expression and cardiomyocyte function induced by replating were reversible in the course of the second week after replating. Gene enrichment analysis based on RNA-sequencing data revealed changes in the expression profile of mechanosensation/-transduction-related genes and pathways, especially integrin-associated signaling. Accordingly, the integrin downstream mediator focal adhesion kinase (FAK) promoted ß-MyHC expression on a stiff matrix, further validating gene enrichment analysis. To conclude, detachment and replating induced substantial changes in gene expression, MyHC isoform composition, and function of long-term cultivated human stem cell-derived CMs, thus inducing alterations in mechanosensation/-transduction, that need to be considered, particularly for downstream in vitro assays.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myosins , Myosin Heavy Chains/genetics , Integrins
4.
Stem Cell Reports ; 13(2): 366-379, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31353227

ABSTRACT

Aiming at clinical translation, robust directed differentiation of human pluripotent stem cells (hPSCs), preferentially in chemically defined conditions, is a key requirement. Here, feasibility of suspension culture based hPSC-cardiomyocyte (hPSC-CM) production in low-cost, xeno-free media compatible with good manufacturing practice standards is shown. Applying stirred tank bioreactor systems at increasing dimensions, our advanced protocol enables routine production of about 1 million hPSC-CMs/mL, yielding ∼1.3 × 108 CM in 150 mL and ∼4.0 × 108 CMs in 350-500 mL process scale at >90% lineage purity. Process robustness and efficiency is ensured by uninterrupted chemical WNT pathway control at early stages of differentiation and results in the formation of almost exclusively ventricular-like CMs. Modulated WNT pathway regulation also revealed the previously unappreciated role of ROR1/CD13 as superior surrogate markers for predicting cardiac differentiation efficiency as soon as 72 h of differentiation. This monitoring strategy facilitates process upscaling and controlled mass production of hPSC derivatives.


Subject(s)
Cell Differentiation/drug effects , Culture Media/pharmacology , Wnt Signaling Pathway/drug effects , Bioreactors , CD13 Antigens/genetics , CD13 Antigens/metabolism , Cell Culture Techniques/methods , Culture Media/chemistry , Humans , Mesoderm/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism
5.
Proc Natl Acad Sci U S A ; 115(41): E9590-E9599, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30254169

ABSTRACT

The blood-brain barrier protects the brain against a variety of potentially toxic compounds. Barrier function results from tight junctions between brain capillary endothelial cells and high expression of active efflux transporters, including P-glycoprotein (Pgp), at the apical membrane of these cells. In addition to actively transporting drugs out of the cell, Pgp mediates lysosomal sequestration of chemotherapeutic drugs in cancer cells, thus contributing to drug resistance. Here, we describe that lysosomal sequestration of Pgp substrates, including doxorubicin, also occurs in human and porcine brain endothelial cells that form the blood-brain barrier. This is followed by shedding of drug-sequestering vesicular structures, which stay attached to the apical side of the plasma membrane and form aggregates ("barrier bodies") that ultimately undergo phagocytosis by neutrophils, thus constituting an as-yet-undescribed mechanism of drug disposal. These findings introduce a mechanism that might contribute to brain protection against potentially toxic xenobiotics, including therapeutically important chemotherapeutic drugs.


Subject(s)
Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Lysosomes/metabolism , Neutrophils/metabolism , Phagocytosis/drug effects , Xenobiotics/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Blood-Brain Barrier/pathology , Cell Line , Endothelial Cells/pathology , Humans , Lysosomes/pathology , Neutrophils/pathology , Swine , Xenobiotics/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL