Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(7): 072501, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38427880

ABSTRACT

Five previously unknown isotopes (^{182,183}Tm, ^{186,187}Yb, ^{190}Lu) were produced, separated, and identified for the first time at the Facility for Rare Isotope Beams (FRIB) using the Advanced Rare Isotope Separator (ARIS). The new isotopes were formed through the interaction of a ^{198}Pt beam with a carbon target at an energy of 186 MeV/u and with a primary beam power of 1.5 kW. Event-by-event particle identification of A, Z, and q for the reaction products was performed by combining measurements of the energy loss, time of flight, magnetic rigidity Bρ, and total kinetic energy. The ARIS separator has a novel two-stage design with high resolving power to strongly suppress contaminant beams. This successful new isotope search was performed less than one year after FRIB operations began and demonstrates the discovery potential of the facility which will ultimately provide 400 kW of primary beam power.

2.
Phys Rev Lett ; 128(21): 212301, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687443

ABSTRACT

For high-power heavy ion accelerators, the development of a suitable charge stripper, which can handle intense beams, is essential. This Letter describes the first experimental demonstration of a heavy ion liquid lithium charge stripper. A 10-20 µm thick liquid lithium jet flowing at >50 m/s was formed and confirmed stable when bombarded by various heavy ion beams, while increasing the charge state of the incoming beams to the desired charge state range. This demonstration proved the existing power limitation with the conventional strippers can be overcome by the liquid-metal stripper, opening completely new possibilities in high-power accelerator development.

3.
Phys Rev Lett ; 126(11): 114801, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33798347

ABSTRACT

Experimental studies of the simultaneous acceleration of three-charge-state ^{129}Xe^{49+,50+,51+} beam from 17 to 180 MeV/nucleon in a superconducting linear accelerator are presented. The beam parameters for each individual- and multiple-charge-state beam were measured and compared with the particle tracking simulations. Detailed measurements were performed to characterize the multiple-charge-state beam's recombination after a second-order achromat and isopath 180° bending system. As a result of the recombination of three charge states in the six-dimensional phase space, the xenon beam intensity was increased by 2.5-fold compared to the single-charge-state beam. The results presented in the Letter fully validate the possibility to produce and utilize high-quality multiple-charge-state heavy-ion beams in a large-scale superconducting linac to increase the available beam power on an isotope production target.

4.
Rev Sci Instrum ; 87(2): 02B506, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26932059

ABSTRACT

An Electron Beam Ion Source Charge Breeder (EBIS-CB) has been developed at Argonne to breed radioactive beams from the CAlifornium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne Tandem Linac Accelerator System (ATLAS). The EBIS-CB will replace the existing ECR charge breeder to increase the intensity and significantly improve the purity of reaccelerated radioactive ion beams. The CARIBU EBIS-CB has been successfully commissioned offline with an external singly charged cesium ion source. The performance of the EBIS fully meets the specifications to breed rare isotope beams delivered from CARIBU. The EBIS is being relocated and integrated into ATLAS and CARIBU. A long electrostatic beam transport system including two 180° bends in the vertical plane has been designed. The commissioning of the EBIS and the beam transport system in their permanent location will start at the end of this year.

5.
Rev Sci Instrum ; 86(8): 083311, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26329185

ABSTRACT

The Electron Beam Ion Source (EBIS), developed to breed Californium Rare Isotope Breeder Upgrade (CARIBU) radioactive beams at Argonne Tandem Linac Accelerator System (ATLAS), is being tested off-line. A unique property of the EBIS is a combination of short breeding times, high repetition rates, and a large acceptance. Overall, we have implemented many innovative features during the design and construction of the CARIBU EBIS as compared to the existing EBIS breeders. The off-line charge breeding tests are being performed using a surface ionization source that produces singly charged cesium ions. The main goal of the off-line commissioning is to demonstrate stable operation of the EBIS at a 10 Hz repetition rate and a breeding efficiency into single charge state higher than 15%. These goals have been successfully achieved and exceeded. We have measured (20% ± 0.7%) breeding efficiency into the single charge state of 28+ cesium ions with the breeding time of 28 ms. In general, the current CARIBU EBIS operational parameters can provide charge breeding of any ions in the full mass range of periodic table with high efficiency, short breeding times, and sufficiently low charge-to-mass ratio, 1/6.3 for the heaviest masses, for further acceleration in ATLAS. In this paper, we discuss the parameters of the EBIS and the charge breeding results in a pulsed injection mode with repetition rates up to 10 Hz.

6.
Rev Sci Instrum ; 85(2): 02B901, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24593606

ABSTRACT

A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) is being developed by the ANL Physics Division to increase the intensity and improve the purity of accelerated radioactive ion beams. A wide variety of low-energy neutron-rich ion beams are produced by the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne Tandem Linac Accelerator System (ATLAS). These beams will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) ≥ 1/7 and accelerated by ATLAS to energies of about 10 MeV/u. The assembly of the CARIBU EBIS charge breeder except the injection/extraction beam lines has been completed. This summer we started electron beam commissioning of the EBIS. The first results on electron beam extraction, transport from the electron gun to a high power electron collector are presented and discussed.

7.
Rev Sci Instrum ; 83(2): 02A502, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380198

ABSTRACT

The design of the ion injection line connecting the electron beam ion source (EBIS) charge breeder and the Californium Rare Isotope Breeder Upgrade radio frequency quadrupole cooler-buncher at the Argonne Tandem Linear Accelerator System was investigated with particle tracking simulations. The injection line was configured to accommodate several differential pumping sections, individual optical components were optimized to minimize emittance growth, and the ion beam parameters were matched with the EBIS electron beam acceptance to minimize losses upon injection.

8.
Rev Sci Instrum ; 83(2): 02A902, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22380243

ABSTRACT

Recently, the Californium Rare Isotope Breeder Upgrade (CARIBU) to the Argonne Tandem Linac Accelerator System (ATLAS) was commissioned and became available for production of rare isotopes. Currently, an electron cyclotron resonance ion source is used as a charge breeder for CARIBU beams. To further increase the intensity and improve the purity of neutron-rich ion beams accelerated by ATLAS, we are developing a high-efficiency charge breeder for CARIBU based on an electron beam ion source (EBIS). The CARIBU EBIS charge breeder will utilize the state-of-the-art EBIS technology recently developed at Brookhaven National Laboratory (BNL). The electron beam current density in the CARIBU EBIS trap will be significantly higher than that in existing operational charge-state breeders based on the EBIS concept. The design of the CARIBU EBIS charge breeder is nearly complete. Long-lead components of the EBIS such as a 6-T superconducting solenoid and an electron gun have been ordered with the delivery schedule in the fall of 2011. Measurements of expected breeding efficiency using the BNL Test EBIS have been performed using a Cs(+) surface ionization ion source for external injection in pulsed mode. In these experiments we have achieved ∼70% injection∕extraction efficiency and breeding efficiency into the most abundant charge state of ∼17%.

9.
Phys Rev Lett ; 86(13): 2798-801, 2001 Mar 26.
Article in English | MEDLINE | ID: mdl-11290042

ABSTRACT

The possibility of simultaneously accelerating particles with a range of charge-to-mass ratios ( approximately 20%) to the same energy is proposed and demonstrated for a superconducting linac. Uranium ions stripped in a foil with eight charge states have been accelerated through a portion of the ATLAS linac from 286 to 690 MeV, with 94% of the injected uranium in the accelerated beam. Emittance of the resultant beam has been measured and the energy spread was 1.3% compared to 0.4% for a single charge state. This development has immediate application to the high-intensity acceleration of heavy ions that are limited by ion-source intensities, such as the proposed Rare Isotope Accelerator Facility.

SELECTION OF CITATIONS
SEARCH DETAIL
...